Bennett Eric J, Bjerregaard Jens, Knapp James E, Chavous David A, Friedman Alan M, Royer William E, O'Connor Clare M
Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA.
Biochemistry. 2003 Nov 11;42(44):12844-53. doi: 10.1021/bi034891+.
Protein L-isoaspartyl methyltransferases (PIMT; EC 2.1.1.77) catalyze the S-adenosylmethionine-dependent methylation of L-isoaspartyl residues that arise spontaneously in proteins with age, thereby initiating a repair process that restores the normal backbone configuration to the damaged polypeptide. In Drosophila melanogaster, overexpression of PIMT in transgenic flies extends the normal life span, suggesting that protein damage can be a limiting factor in longevity. To understand structural features of the Drosophila PIMT (dPIMT) important for catalysis, the crystal structure of dPIMT was determined at a resolution of 2.2 A, and site-directed mutagenesis was used to identify the role of Ser-60 in catalysis. The core structure of dPIMT is similar to the modified nucleotide-binding fold observed in PIMTs from extreme thermophiles and humans. A striking difference of the dPIMT structure is the rotation of the C-terminal residues by 90 degrees relative to the homologous structures. Effectively, this displacement generates a more open conformation that allows greater solvent access to S-adenosylhomocysteine, which is almost completely buried in other PIMT structures. The enzyme may alternate between the open conformation found for dPIMT and the more closed conformations described for other PIMTs during its catalytic cycle, thereby allowing the exchange of substrates and products. Catalysis by dPIMT requires the side chain of the conserved, active site residue Ser-60, since substitution of this residue with Thr, Gln, or Ala reduces or abolishes the methylation of both protein and isoaspartyl peptide substrates.
蛋白质L-异天冬氨酰甲基转移酶(PIMT;EC 2.1.1.77)催化L-异天冬氨酰残基的S-腺苷甲硫氨酸依赖性甲基化,这些残基会随着蛋白质老化而自发产生,从而启动一个修复过程,使受损多肽恢复正常的主链结构。在黑腹果蝇中,转基因果蝇中PIMT的过表达延长了正常寿命,这表明蛋白质损伤可能是寿命的限制因素。为了了解果蝇PIMT(dPIMT)对催化作用重要的结构特征,以2.2埃的分辨率测定了dPIMT的晶体结构,并使用定点诱变来确定Ser-60在催化中的作用。dPIMT的核心结构类似于在嗜热微生物和人类的PIMT中观察到的修饰核苷酸结合结构域。dPIMT结构的一个显著差异是C末端残基相对于同源结构旋转了90度。实际上,这种位移产生了一种更开放的构象,使得溶剂更容易接近S-腺苷高半胱氨酸,而在其他PIMT结构中S-腺苷高半胱氨酸几乎被完全掩埋。在催化循环中,该酶可能在dPIMT的开放构象和其他PIMT的更封闭构象之间交替,从而允许底物和产物的交换。dPIMT的催化作用需要保守的活性位点残基Ser-60的侧链,因为用苏氨酸、谷氨酰胺或丙氨酸取代该残基会降低或消除蛋白质和异天冬氨酰肽底物的甲基化。