Wang Danxin, Raehal Kirsten M, Lin Emil T, Lowery John J, Kieffer Brigitte L, Bilsky Edward J, Sadée Wolfgang
Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, Wheeler Center for Neurobiology of Addiction, University of California San Francisco,
J Pharmacol Exp Ther. 2004 Feb;308(2):512-20. doi: 10.1124/jpet.103.054049. Epub 2003 Nov 4.
Narcotic analgesics cause addiction by poorly understood mechanisms, involving mu opoid receptor (MOR). Previous cell culture studies have demonstrated significant basal, spontaneous MOR signaling activity, but its relevance to narcotic addiction remained unclear. In this study, we tested basal MOR-signaling activity in brain tissue from untreated and morphine-pretreated mice, in comparison to antagonist-induced withdrawal in morphine-dependent mice. Using guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding and adenylyl cyclase activity assay in brain homogenates, we demonstrated that morphine pretreatment of mice enhanced basal MOR signaling in mouse brain homogenates and, moreover, caused persistent changes in the effects of naloxone and naltrexone, antagonists that elicit severe withdrawal in dependent subjects. Naloxone and naltrexone suppressed basal [(35)S]GTP gamma S binding (acting as "inverse agonists") only after morphine pretreatment, but not in drug-naive animals. Moreover, naloxone and naltrexone stimulated adenylyl cyclase activity in striatum homogenates only after morphine pretreatment, by reversing the inhibitory effects of basal MOR activity. After cessation of morphine treatment, the time course of inverse naloxone effects on basal MOR signaling was similar to the time course of naltrexone-stimulated narcotic withdrawal over several days. The neutral antagonist 6 beta-naltrexol blocked MOR activation without affecting basal signaling (G protein coupling and adenylyl cyclase regulation) and also elicited substantially less severe withdrawal. These results demonstrate long-lasting regulation of basal MOR signaling as a potential factor in narcotic dependence.
麻醉性镇痛药通过尚不清楚的机制导致成瘾,这些机制涉及μ阿片受体(MOR)。先前的细胞培养研究已证明存在显著的基础、自发MOR信号活性,但其与麻醉成瘾的相关性仍不清楚。在本研究中,我们检测了未处理和经吗啡预处理小鼠脑组织中的基础MOR信号活性,并与吗啡依赖小鼠中拮抗剂诱导的戒断反应进行了比较。通过在脑匀浆中使用鸟苷5'-O-(3-[(35)S]硫代)三磷酸([(35)S]GTPγS)结合和腺苷酸环化酶活性测定,我们证明对小鼠进行吗啡预处理可增强小鼠脑匀浆中的基础MOR信号,此外,还会导致纳洛酮和纳曲酮(在依赖个体中引发严重戒断反应的拮抗剂)作用的持续变化。纳洛酮和纳曲酮仅在吗啡预处理后才抑制基础[(35)S]GTPγS结合(作为“反向激动剂”),而在未接触过药物的动物中则不会。此外,纳洛酮和纳曲酮仅在吗啡预处理后才通过逆转基础MOR活性的抑制作用来刺激纹状体匀浆中的腺苷酸环化酶活性。在停止吗啡治疗后,纳洛酮对基础MOR信号的反向作用的时间进程与纳曲酮刺激的麻醉戒断反应在数天内的时间进程相似。中性拮抗剂6β-纳曲醇可阻断MOR激活而不影响基础信号(G蛋白偶联和腺苷酸环化酶调节),并且引发的戒断反应也明显较轻。这些结果表明基础MOR信号的长期调节是麻醉依赖性的一个潜在因素。