Yang Keun-Hang, Franaszczuk Piotr J, Bergey Gregory K
Department of Neurology, Johns Hopkins Epilepsy Center, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Meyer 2-147, Baltimore, MD 21287, USA.
Biol Cybern. 2003 Oct;89(4):242-53. doi: 10.1007/s00422-003-0429-3. Epub 2003 Aug 12.
The balance between inhibition and excitation plays a crucial role in the generation of synchronous bursting activity in neuronal circuits. In human and animal models of epilepsy, changes in both excitatory and inhibitory synaptic inputs are known to occur. Locations and distribution of these excitatory and inhibitory synaptic inputs on pyramidal cells play a role in the integrative properties of neuronal activity, e.g., epileptiform activity. Thus the location and distribution of the inputs onto pyramidal cells are important parameters that influence neuronal activity in epilepsy. However, the location and distribution of inhibitory synapses converging onto pyramidal cells have not been fully studied. The objectives of this study are to investigate the roles of the relative location of inhibitory synapses on the dendritic tree and soma in the generation of bursting activity. We investigate influences of somatic and dendritic inhibition on bursting activity patterns in several paradigms of potential connections using a simplified multicompartmental model. We also investigate the effects of distribution of fast and slow components of GABAergic inhibition in pyramidal cells. Interspike interval (ISI) analysis is used for examination of bursting patterns. Simulations show that the inhibitory interneuron regulates neuronal bursting activity. Bursting behavior patterns depend on the synaptic weight and delay of the inhibitory connection as well as the location of the synapse. When the inhibitory interneuron synapses on the pyramidal neuron, inhibitory action is stronger if the inhibitory synapse is close to the soma. Alterations of synaptic weight of the interneuron can be compensatory for changes in the location of synaptic input. The relative changes in these parameters exert a considerable influence on whether synchronous bursting activity is facilitated or reduced. Additional simulations show that the slow GABAergic inhibitory component is more effective than the fast component in distal dendrites. Taken together, these findings illustrate the potential for GABAergic inhibition in the soma and dendritic tree to play an important modulatory role in bursting activity patterns.
抑制与兴奋之间的平衡在神经回路同步爆发活动的产生中起着至关重要的作用。在人类和动物癫痫模型中,已知兴奋性和抑制性突触输入都会发生变化。这些兴奋性和抑制性突触输入在锥体细胞上的位置和分布在神经元活动的整合特性(例如癫痫样活动)中发挥作用。因此,输入到锥体细胞上的位置和分布是影响癫痫中神经元活动的重要参数。然而,汇聚到锥体细胞上的抑制性突触的位置和分布尚未得到充分研究。本研究的目的是探讨抑制性突触在树突和胞体上的相对位置在爆发活动产生中的作用。我们使用简化的多室模型,在几种潜在连接模式下研究体细胞和树突抑制对爆发活动模式的影响。我们还研究了锥体细胞中GABA能抑制的快速和慢速成分分布的影响。使用峰间间隔(ISI)分析来检查爆发模式。模拟结果表明,抑制性中间神经元调节神经元的爆发活动。爆发行为模式取决于抑制性连接的突触权重和延迟以及突触的位置。当抑制性中间神经元与锥体细胞形成突触时,如果抑制性突触靠近胞体,抑制作用会更强。中间神经元突触权重的改变可以补偿突触输入位置的变化。这些参数的相对变化对同步爆发活动是促进还是减少有相当大的影响。额外的模拟表明,在远端树突中,慢速GABA能抑制成分比快速成分更有效。综上所述,这些发现说明了胞体和树突中的GABA能抑制在爆发活动模式中发挥重要调节作用的潜力。