Vaysse Laurence, Harbottle Richard, Bigger Brian, Bergau Anna, Tolmachov Oleg, Coutelle Charles
Gene Therapy Research Group, Division of Biomedical Science, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
J Biol Chem. 2004 Feb 13;279(7):5555-64. doi: 10.1074/jbc.M311894200. Epub 2003 Nov 7.
The ultimate destination for most gene therapy vectors is the nucleus and nuclear import of potentially therapeutic DNA is one of the major barriers for nonviral vectors. We have developed a novel approach of attaching a nuclear localization sequence (NLS) peptide to DNA in a non-essential position, by generating a fusion between the tetracycline repressor protein TetR and the SV40-derived NLS peptide. The high affinity and specificity of TetR for the short DNA sequence tetO was used in these studies to bind the NLS to DNA as demonstrated by the reduced electrophoretic mobility of the TetR.tetO-DNA complexes. The protein TetR-NLS, but not control protein TetR, specifically enhances gene expression from lipofected tetO-containing DNA between 4- and 16-fold. The specific enhancement is observed in a variety of cell types, including primary and growth-arrested cells. Intracellular trafficking studies demonstrate an increased accumulation of fluorescence labeled DNA in the nucleus after TetR-NLS binding. In comparison, binding studies using the similar fusion of peptide nucleic acid (PNA) with NLS peptide, demonstrate specific binding of PNA to plasmid DNA. However, although we observed a 2-8.5-fold increase in plasmid-mediated luciferase activity with bis-PNA-NLS, control bis-PNA without an NLS sequence gave a similar increase, suggesting that the effect may not be because of a specific bis-PNA-NLS-mediated enhancement of nuclear transfer of the plasmid. Overall, we found TetRNLS-enhanced plasmid-mediated transgene expression at a similar level to that by bis-PNA-NLS or bis-PNA alone but specific to nuclear uptake and significantly more reliable and reproducible.
大多数基因治疗载体的最终目的地是细胞核,而潜在治疗性DNA的核输入是非病毒载体的主要障碍之一。我们开发了一种新方法,即将核定位序列(NLS)肽连接到DNA的非必需位置,通过在四环素阻遏蛋白TetR和SV40衍生的NLS肽之间产生融合。在这些研究中,利用TetR对短DNA序列tetO的高亲和力和特异性将NLS与DNA结合,TetR.tetO-DNA复合物电泳迁移率降低证明了这一点。蛋白质TetR-NLS而非对照蛋白TetR能特异性增强脂质转染的含tetO的DNA的基因表达4至16倍。在多种细胞类型中都观察到了这种特异性增强,包括原代细胞和生长停滞细胞。细胞内运输研究表明,TetR-NLS结合后,荧光标记的DNA在细胞核中的积累增加。相比之下,使用肽核酸(PNA)与NLS肽的类似融合进行的结合研究表明,PNA与质粒DNA有特异性结合。然而,尽管我们观察到双PNA-NLS使质粒介导的荧光素酶活性提高了2至8.5倍,但没有NLS序列的对照双PNA也有类似的提高,这表明这种效应可能不是由于双PNA-NLS介导的质粒核转运特异性增强。总体而言,我们发现TetR-NLS增强的质粒介导的转基因表达水平与双PNA-NLS或单独的双PNA相似,但对核摄取具有特异性,并且明显更可靠、可重复。