Suppr超能文献

金属和双金属纳米颗粒中的晶格测量与合金成分

Lattice measurement and alloy compositions in metal and bimetallic nanoparticles.

作者信息

Tsen S-C Y, Crozier P A, Liu J

机构信息

Department of Physics, Arizona State University, PO Box 871704, Tempe, AZ 85287-1704, USA.

出版信息

Ultramicroscopy. 2003 Dec;98(1):63-72. doi: 10.1016/S0304-3991(03)00119-0.

Abstract

A new reliable method for determining the lattice spacings of metallic and bimetallic nanoparticles in phase contrast high resolution electron microscopy (HREM) images was developed. In this study, we discuss problems in applying HREM techniques to single metal (Pt and Au) and bimetallic (AuPd) nanoparticles of unknown shapes and random orientations. Errors arising from particle tilt and edge effects are discussed and analysis criteria are presented to reduce these errors in measuring the lattice parameters of nanoparticles. The accuracy of an individual particle lattice measurement is limited by an effective standard deviation which depends on the size of the individual nanoparticle. For example, the standard deviation for 20-30 A Pt or Au nanoparticles is about 1.5%. To increase the accuracy in determining the lattice spacings of nanoparticles, statistical methods have to be used to obtain the average lattice spacing of an ensemble of nanoparticles. We measured approximately 100 nanoparticles with sizes in the range of 20-30 A and found that the mean lattice spacing can be determined to within 0.2%. By applying Vegard's law to the AuPd bimetallic systems we successfully detected the presence of alloying. For 30 A nanoparticles, the estimated ultimate error in determining the composition of the AuPd alloy is about 3% provided that at least 100 particles are measured. Finally, the challenges in determining the presence of more than one alloy phases in bimetallic nanoparticle systems were also discussed.

摘要

开发了一种用于确定相衬高分辨率电子显微镜(HREM)图像中金属和双金属纳米颗粒晶格间距的可靠新方法。在本研究中,我们讨论了将HREM技术应用于形状未知且取向随机的单金属(Pt和Au)及双金属(AuPd)纳米颗粒时存在的问题。讨论了由颗粒倾斜和边缘效应引起的误差,并提出了分析标准以减少测量纳米颗粒晶格参数时的这些误差。单个颗粒晶格测量的精度受有效标准偏差的限制,该偏差取决于单个纳米颗粒的尺寸。例如,对于20 - 30 Å的Pt或Au纳米颗粒,标准偏差约为1.5%。为了提高确定纳米颗粒晶格间距的精度,必须使用统计方法来获得一组纳米颗粒的平均晶格间距。我们测量了大约100个尺寸在20 - 30 Å范围内的纳米颗粒,发现平均晶格间距可以确定在0.2%以内。通过将维加德定律应用于AuPd双金属体系,我们成功检测到了合金化的存在。对于30 Å的纳米颗粒,假设至少测量100个颗粒,确定AuPd合金成分时的估计最终误差约为3%。最后,还讨论了确定双金属纳米颗粒体系中存在不止一种合金相时面临的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验