Suppr超能文献

肺癌的化学预防:现状与未来前景。

Chemoprevention of lung cancer: current status and future prospects.

作者信息

van Zandwijk Nico, Hirsch Fred R

机构信息

Department of Thoracic Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.

出版信息

Lung Cancer. 2003 Dec;42 Suppl 1:S71-9. doi: 10.1016/s0169-5002(03)00307-6.

Abstract

The statistics on lung cancer form a powerful argument to develop new methods to control this most deadly form of cancer. Chemoprevention is one of these new approaches. Carcinogens from cigarette smoke form the link between nicotine addiction and lung cancer. At the same time it has become increasingly clear that dietary and genetically determined factors play an important role in modulating the individual susceptibility and are linked to the chemoprevention approach. In spite of many positive pre-clinical observations, most of the experiences with potential chemopreventive agents such as retinoids and antioxidants in individuals at risk for lung cancer have been negative so far. Moreover, beta-carotene was associated with an increased lung cancer incidence in two large randomized studies, most likely due to negative interaction with cigarette smoke. The recent progress in diagnostic techniques and molecular biology has led to a new paradigm for chemoprevention and there is considerable optimism regarding the potential of new molecules and antibodies that target specific cellular receptors or mutations. This article reviews the lung cancer chemoprevention efforts of the last two decades and also gives prospects for the next coming years.

摘要

肺癌的统计数据有力地证明了开发新方法来控制这种最致命癌症形式的必要性。化学预防就是这些新方法之一。香烟烟雾中的致癌物构成了尼古丁成瘾与肺癌之间的联系。与此同时,越来越明显的是,饮食和基因决定的因素在调节个体易感性方面起着重要作用,并且与化学预防方法相关。尽管有许多积极的临床前观察结果,但到目前为止,在肺癌高危个体中使用潜在化学预防剂(如类维生素A和抗氧化剂)的大多数经验都是负面的。此外,在两项大型随机研究中,β-胡萝卜素与肺癌发病率增加有关,这很可能是由于与香烟烟雾的负面相互作用。诊断技术和分子生物学的最新进展导致了化学预防的新范式,人们对靶向特定细胞受体或突变的新分子和抗体的潜力抱有相当大的乐观态度。本文回顾了过去二十年肺癌化学预防的努力,并展望了未来几年的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验