Suppr超能文献

霍乱弧菌O139 O抗原多糖对于海水中依赖Ca2+的生物膜形成至关重要。

The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water.

作者信息

Kierek Katharine, Watnick Paula I

机构信息

Division of Geographic Medicine and Infectious Diseases, Tufts-New England Medical Center, Boston, MA 02111, USA.

出版信息

Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14357-62. doi: 10.1073/pnas.2334614100. Epub 2003 Nov 12.

Abstract

Vibrio cholerae is both an inhabitant of estuarine environments and the etiologic agent of the diarrheal disease cholera. Previous work has demonstrated that V. cholerae forms both an exopolysaccharide-dependent biofilm and a Ca2+-dependent biofilm. In this work, we demonstrate a role for the O-antigen polysaccharide of V. cholerae in Ca2+-dependent biofilm development in model and true sea water. Interestingly, V. cholerae biofilms, as well as the biofilms of several other Vibrio species, disintegrate when Ca2+ is removed from the bathing medium, suggesting that Ca2+ is interacting directly with the O-antigen polysaccharide. In the Bay of Bengal, cholera incidence has been correlated with increased sea surface height. Because of the low altitude of this region, increases in sea surface height are likely to lead to transport of sea water, marine particulates, and marine biofilms into fresh water environments. Because fresh water is Ca2+-poor, our results suggest that one potential outcome of an increase is sea surface height is the dispersal of marine biofilms with an attendant increase in planktonic marine bacteria such as V. cholerae. Such a phenomenon may contribute to the correlation of increased sea surface height with cholera.

摘要

霍乱弧菌既是河口环境的栖息者,也是腹泻病霍乱的病原体。先前的研究表明,霍乱弧菌既能形成依赖胞外多糖的生物膜,也能形成依赖Ca²⁺的生物膜。在这项研究中,我们证明了霍乱弧菌的O抗原多糖在模型海水和真实海水中依赖Ca²⁺的生物膜形成过程中发挥作用。有趣的是,当从培养基中去除Ca²⁺时,霍乱弧菌生物膜以及其他几种弧菌属细菌的生物膜都会解体,这表明Ca²⁺直接与O抗原多糖相互作用。在孟加拉湾,霍乱发病率与海平面上升有关。由于该地区海拔较低,海平面上升可能导致海水、海洋颗粒和海洋生物膜进入淡水环境。由于淡水Ca²⁺含量低,我们的研究结果表明,海平面上升的一个潜在后果是海洋生物膜的扩散,随之浮游海洋细菌(如霍乱弧菌)数量增加。这种现象可能导致海平面上升与霍乱之间的关联。

相似文献

1
The Vibrio cholerae O139 O-antigen polysaccharide is essential for Ca2+-dependent biofilm development in sea water.
Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14357-62. doi: 10.1073/pnas.2334614100. Epub 2003 Nov 12.
2
A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor.
J Bacteriol. 1999 Jun;181(11):3606-9. doi: 10.1128/JB.181.11.3606-3609.1999.
3
Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh.
Appl Environ Microbiol. 2006 Apr;72(4):2849-55. doi: 10.1128/AEM.72.4.2849-2855.2006.
5
Genetic evidence that the Vibrio cholerae monolayer is a distinct stage in biofilm development.
Mol Microbiol. 2004 Apr;52(2):573-87. doi: 10.1111/j.1365-2958.2004.04000.x.
6
Environmental determinants of Vibrio cholerae biofilm development.
Appl Environ Microbiol. 2003 Sep;69(9):5079-88. doi: 10.1128/AEM.69.9.5079-5088.2003.
9
Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh.
Microbiol Immunol. 2007;51(4):369-79. doi: 10.1111/j.1348-0421.2007.tb03924.x.

引用本文的文献

1
Genomic and induction evidence for bacteriophage contributions to sargassum-bacteria symbioses.
Microbiome. 2024 Aug 1;12(1):143. doi: 10.1186/s40168-024-01860-7.
3
Diffusiophoretic Particle Penetration into Bacterial Biofilms.
ACS Appl Mater Interfaces. 2023 Jul 19;15(28):33263-33272. doi: 10.1021/acsami.3c03190. Epub 2023 Jul 3.
4
New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology.
Adv Exp Med Biol. 2023;1404:17-39. doi: 10.1007/978-3-031-22997-8_2.
5
Searching for the Secret of Stickiness: How Biofilms Adhere to Surfaces.
Front Microbiol. 2021 Jul 8;12:686793. doi: 10.3389/fmicb.2021.686793. eCollection 2021.
6
Response to Nutrient Limitation.
Front Microbiol. 2021 Jun 24;12:691563. doi: 10.3389/fmicb.2021.691563. eCollection 2021.
7
Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections.
Front Microbiol. 2021 May 12;12:676458. doi: 10.3389/fmicb.2021.676458. eCollection 2021.
8
Use of Quorum Sensing Inhibition Strategies to Control Microfouling.
Mar Drugs. 2021 Jan 30;19(2):74. doi: 10.3390/md19020074.

本文引用的文献

1
Activity of Pseudomonas aeruginosa in biofilms: effect of calcium.
Biotechnol Bioeng. 1989 Jan 20;33(4):406-14. doi: 10.1002/bit.260330405.
2
Environmental determinants of Vibrio cholerae biofilm development.
Appl Environ Microbiol. 2003 Sep;69(9):5079-88. doi: 10.1128/AEM.69.9.5079-5088.2003.
3
Role of Vibrio cholerae O139 surface polysaccharides in intestinal colonization.
Infect Immun. 2002 Nov;70(11):5990-6. doi: 10.1128/IAI.70.11.5990-5996.2002.
4
Effects of global climate on infectious disease: the cholera model.
Clin Microbiol Rev. 2002 Oct;15(4):757-70. doi: 10.1128/CMR.15.4.757-770.2002.
5
Vibrio cholerae CytR is a repressor of biofilm development.
Mol Microbiol. 2002 Jul;45(2):471-83. doi: 10.1046/j.1365-2958.2002.03023.x.
6
The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton.
Appl Environ Microbiol. 2001 Jul;67(7):3220-5. doi: 10.1128/AEM.67.7.3220-3225.2001.
10
Quantification of biofilm structures by the novel computer program COMSTAT.
Microbiology (Reading). 2000 Oct;146 ( Pt 10):2395-2407. doi: 10.1099/00221287-146-10-2395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验