Venton B Jill, Zhang Hui, Garris Paul A, Phillips Paul E M, Sulzer David, Wightman R Mark
Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599-3290, USA.
J Neurochem. 2003 Dec;87(5):1284-95. doi: 10.1046/j.1471-4159.2003.02109.x.
The fundamental process that underlies volume transmission in the brain is the extracellular diffusion of neurotransmitters from release sites to distal target cells. Dopaminergic neurons display a range of activity states, from low-frequency tonic firing to bursts of high-frequency action potentials (phasic firing). However, it is not clear how this activity affects volume transmission on a subsecond time scale. To evaluate this, we developed a finite-difference model that predicts the lifetime and diffusion of dopamine in brain tissue. We first used this model to decode in vivo amperometric measurements of electrically evoked dopamine, and obtained rate constants for release and uptake as well as the extent of diffusion. Accurate predictions were made under a variety of conditions including different regions, different stimulation parameters and with uptake inhibited. Second, we used the decoded rate constants to predict how heterogeneity of dopamine release and uptake sites would affect dopamine concentration fluctuations during different activity states in the absence of an electrode. These simulations show that synchronous phasic firing can produce spatially and temporally heterogeneous concentration profiles whereas asynchronous tonic firing elicits uniform, steady-state dopamine concentrations.
大脑中容积传输的基本过程是神经递质从释放位点向远处靶细胞的细胞外扩散。多巴胺能神经元表现出一系列活动状态,从低频紧张性放电到高频动作电位爆发(相位性放电)。然而,尚不清楚这种活动如何在亚秒时间尺度上影响容积传输。为了评估这一点,我们开发了一个有限差分模型,该模型可预测多巴胺在脑组织中的寿命和扩散。我们首先使用该模型解码电诱发多巴胺的体内安培测量值,并获得释放和摄取的速率常数以及扩散程度。在包括不同区域、不同刺激参数以及摄取受抑制的各种条件下都做出了准确的预测。其次,我们使用解码后的速率常数来预测在没有电极的情况下,多巴胺释放和摄取位点的异质性如何影响不同活动状态下多巴胺浓度的波动。这些模拟表明,同步相位性放电可产生空间和时间上异质的浓度分布,而异步紧张性放电则引发均匀的稳态多巴胺浓度。