Kugler Gerlinde, Weiss Regina G, Flucher Bernhard E, Grabner Manfred
Department of Biochemical Pharmacology, University of Innsbruck, A-6020 Innsbruck, Austria.
J Biol Chem. 2004 Feb 6;279(6):4721-8. doi: 10.1074/jbc.M307538200. Epub 2003 Nov 18.
Residues Leu720-Leu764 within the II-III loop of the skeletal muscle dihydropyridine receptor (DHPR) alpha1S subunit represent a critical domain for the orthograde excitation-contraction coupling as well as for retrograde DHPR L-current-enhancing coupling with the ryanodine receptor (RyR1). To better understand the molecular mechanism underlying this bidirectional DHPR-RyR1 signaling interaction, we analyzed the critical domain to the single amino acid level. To this end, constructs based on the highly dissimilar housefly DHPR II-III loop in an otherwise skeletal DHPR as an interaction-inert sequence background were expressed in dysgenic (alpha1S-null) myotubes for simultaneous recordings of depolarization-induced intracellular Ca2+ transients (orthograde coupling) and whole-cell Ca2+ currents (retrograde coupling). In the minimal skeletal II-III loop sequence (Asp734-Asp748 required for full bidirectional coupling, eight amino acids heterologous between skeletal and cardiac DHPR were exchanged for the corresponding cardiac residues. Four of these skeletal-specific residues (Ala739, Phe741, Pro742, and Asp744) turned out to be essential for orthograde and two of them (Ala739 and Phe741) for retrograde coupling, indicating that orthograde coupling does not necessarily correlate with retrograde signaling. Secondary structure predictions of the critical domain show that an alpha-helical (cardiac sequence-type) conformation of a cluster of negatively charged residues (Asp744-Glu751 of alpha1S) corresponds with significantly reduced Ca2+ transients. Conversely, a predicted random coil structure (skeletal sequence-type) seems to be prerequisite for the restoration of skeletal-type excitation-contraction coupling. Thus, not only the primary but also the secondary structure of the critical domain is an essential determinant of the tissue-specific mode of EC coupling.
骨骼肌二氢吡啶受体(DHPR)α1S亚基II-III环内的Leu720-Leu764残基是正向兴奋-收缩偶联以及逆向DHPR L电流增强与兰尼碱受体(RyR1)偶联的关键结构域。为了更好地理解这种双向DHPR-RyR1信号相互作用的分子机制,我们将关键结构域分析到单个氨基酸水平。为此,基于在其他方面为骨骼肌DHPR的高度不同的家蝇DHPR II-III环构建体,以相互作用惰性序列为背景,在发育不全(α1S缺失)的肌管中表达,用于同时记录去极化诱导的细胞内Ca2+瞬变(正向偶联)和全细胞Ca2+电流(逆向偶联)。在最小的骨骼肌II-III环序列(完全双向偶联所需的Asp734-Asp748)中,将骨骼肌和心脏DHPR之间的八个异源氨基酸替换为相应的心脏残基。其中四个骨骼肌特异性残基(Ala739、Phe741、Pro742和Asp744)被证明对正向偶联至关重要,其中两个(Ala739和Phe741)对逆向偶联至关重要,这表明正向偶联不一定与逆向信号相关。关键结构域的二级结构预测表明,一组带负电荷残基(α1S的Asp744-Glu751)的α螺旋(心脏序列型)构象与显著降低的Ca2+瞬变相对应。相反,预测的无规卷曲结构(骨骼肌序列型)似乎是恢复骨骼肌型兴奋-收缩偶联的先决条件。因此,关键结构域的一级结构和二级结构都是EC偶联组织特异性模式的重要决定因素。