Suppr超能文献

Modeling drug albumin binding affinity with e-state topological structure representation.

作者信息

Hall L Mark, Hall Lowell H, Kier Lemont B

机构信息

Hall Associates Consulting, 2 Davis Street, Quincy, Massachusetts 02170-2818, USA.

出版信息

J Chem Inf Comput Sci. 2003 Nov-Dec;43(6):2120-8. doi: 10.1021/ci030019w.

Abstract

The binding affinity to human serum albumin for 94 drugs was modeled with topological descriptors of molecular structure, using as experimental data the HPLC chromatographic retention index [logk(HSA)] on immobilized albumin. The electrotopological state (E-State) along with the molecular connectivity chi indices provided the basis for a satisfactory model: r(2) = 0.77, s = 0.29, q(2) = 0.70, s(press) = 0.33. The 10% leave-group-out (LGO) cross-validation method yielded q(2) (= r(2)(press)) = 0.69. Further, the model was tested on a 10 compound external validation set, yielding a mean absolute error, MAE = 0.31; q(2) (= r(2)(press)) = 0.74. MDL QSAR software was used for setting up the data set, creation of combination descriptors, modeling, and database management. All the statistical tests indicate that the topological model is useful for property estimation. Internal and external validation methods were used, and the results indicate that the model is useful for prediction. Randomizations of the activity values also indicate statistically sound models are very different from random statistics. The model indicates that positive factors for binding affinity include electron accessibility and the number of aromatic rings, aliphatic CH groups (-CH(3), -CH(2)-, >CH-), halogens (fluorine and chlorine), and -OH groups. Five-membered heteroatomic rings present a negative factor, whereas six-membered heteroatomic rings present a positive factor. The specific information described can be used as an aid to the drug design process.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验