Partyka David V, Staples Richard J, Holm R H
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Inorg Chem. 2003 Dec 1;42(24):7877-86. doi: 10.1021/ic030185l.
The nucleophilic reactivity of oxo ligands in the groups M(VI)O(3) in the trigonal complexes [(Me(3)tacn)MO(3)] (M = Mo (1), W (10)) and [(Bu(t)(3)tach)MO(3)] (M = Mo (5), W (14)) has been investigated. Complexes 1/10 can be alkylated with MeOTf to give (Me(3)tacn)MO(2)(OMe) (2/11), silylated with Pr(i)(3)SiOTf to form (Me(3)tacn)MO(2)(OSiPr(i)(3)) (3/12), and protonated with HOTf to yield (Me(3)tacn)MoO(2)(OH) (4). Similarly, complexes 5/14 can be silylated to (Bu(t)(3)tach)MO(2)(OSiPr(i)(3)) (6/15) and protonated to (Bu(t)(3)tach)MO(2)(OH) (7/16). Products were isolated as triflate salts in yields exceeding 70%. When excess acid was used, the dinuclear mu-oxo species (Bu(t)(3)tach)(2)M(2)O(5) (8/17) were obtained. X-ray structures are reported for 2-4, 6-8, 12, and 15-17. All mononuclear complexes have dominant trigonal symmetry with a rhombic distortion owing to a M[bond]OR bond (R = Me, SiPr(i)(3), H), which is longer than M[double bond]O oxo interactions; the latter exert a substantial trans influence on M[bond]N bond lengths. Oxo ligands in 5/14 undergo replacement with sulfide. Lawesson's reagent effects formation of [(Bu(t)(3)tach)MS(3)] (9/18), 14 with excess B(2)S(3) yields incompletely substituted [(Bu(t)(3)tach)WOS(2)] (20), and 5 with excess B(2)S(3) yields [(Bu(t)(3)tach)Mo(IV)O(S(4))] (19). The structures of 9, 19, and 20 are reported. Precedents for M(VI)S(3) groups in five- and six-coordinate molecules are limited. This investigation is the first detailed study of the behavior of M(VI)O(3) groups in nucleophilic and oxo/sulfido substitution reactions and should be useful in synthetic approaches to the active sites of the xanthine oxidase enzyme family and of certain tungstoenzymes. (Bu(t)(3)tach = 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane, Me(3)tacn = 1,4,7-trimethyl-1,4,7-triazacyclonane; OTf = triflate).
对三角配合物[(Me(3)tacn)MO(3)](M = Mo (1),W (10))和[(Bu(t)(3)tach)MO(3)](M = Mo (5),W (14))中M(VI)O(3)基团的亲核反应活性进行了研究。配合物1/10可用MeOTf进行烷基化反应得到(Me(3)tacn)MO(2)(OMe)(2/11),用Pr(i)(3)SiOTf进行硅烷化反应形成(Me(3)tacn)MO(2)(OSiPr(i)(3))(3/12),并用HOTf进行质子化反应生成(Me(3)tacn)MoO(2)(OH)(4)。类似地,配合物5/14可被硅烷化生成(Bu(t)(3)tach)MO(2)(OSiPr(i)(3))(6/15),并被质子化生成(Bu(t)(3)tach)MO(2)(OH)(7/16)。产物以三氟甲磺酸盐的形式分离出来,产率超过70%。当使用过量酸时,可得到双核μ-氧物种(Bu(t)(3)tach)(2)M(2)O(5)(8/17)。报道了2 - 4、6 - 8、12以及15 - 17的X射线结构。所有单核配合物都具有主要的三角对称性,并由于M[键]OR键(R = Me、SiPr(i)(3)、H)而存在菱形畸变,该键长于M[双键]O氧相互作用;后者对M[键]N键长有显著的反位影响。5/14中的氧配体可被硫化物取代。Lawesson试剂促使[(Bu(t)(3)tach)MS(3)](9/18)的形成,14与过量的B(2)S(3)反应生成不完全取代的[(Bu(t)(3)tach)WOS(2)](20),5与过量的B(2)S(3)反应生成[(Bu(t)(3)tach)Mo(IV)O(S(4))](19)。报道了9、19和20的结构。五配位和六配位分子中M(VI)S(3)基团的先例有限。本研究首次详细研究了M(VI)O(3)基团在亲核反应以及氧/硫取代反应中的行为,这对于黄嘌呤氧化酶家族和某些钨酶活性位点的合成方法应具有一定的参考价值。(Bu(t)(3)tach = 1,3,5 - 三叔丁基 - 1,3,5 - 三氮杂环己烷,Me(3)tacn = 1,4,7 - 三甲基 - 1,4,7 - 三氮杂环壬烷;OTf = 三氟甲磺酸盐)