Suppr超能文献

Regulation of heart size in Xenopus laevis.

作者信息

Garriock Robert J, Drysdale Thomas A

机构信息

Lawson Health Research Institute Department of Paediatrics, University of Western Ontario London, Ontario N6A-4V2 Canada.

出版信息

Differentiation. 2003 Oct;71(8):506-15. doi: 10.1046/j.1432-0436.2003.7108005.x.

Abstract

The region with the potential to form the heart has traditionally been called the heart field. This region can be approximated by, but is not identical to, the expression domain of the early cardiac gene Nkx2.5. The region expressing Nkx2.5 does not change in size, although there are major shape changes and a subdivision of the region into non-myogenic and myogenic lineages. Using a variety of embryo manipulations, we have sought to determine whether cellular interactions could change the size of the initial Nkx2.5-expressing region and thus change the size of the heart. We have shown that if the heart is isolated from the dorsal half of the embryo, the volume of tissue expressing myocardial differentiation markers increases, indicating that signals restricting the size of the heart come from the dorsal side. Despite the change in myocardial volume, the non-myogenic heart lineages are still present. The ability of dorsal tissues to restrict the size of the heart is further demonstrated by fusing two Xenopus embryos shortly after gastrulation, generating twinned embryos where the heart of one embryo would develop adjacent to different tissues of the second embryo. The final size of the differentiated heart was markedly reduced if it developed in close proximity to the dorso-anterior surface of the head but not if it developed adjacent to the flank or belly. In all cases, the manipulations that restricted the size of the myocardium also restricted the expression of Nkx2.5 and GATA-4, both key regulatory genes in the cardiogenic pathway. These results provide evidence for a model in which signals from dorso-anterior tissues restrict the size of the heart after gastrulation but before neural fold closure.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验