Ding Ye, Lawrence Charles E
Bioinformatics Center, Wadsworth Center, New York State Department of Health, 150 New Scotland Avenue, Albany, NY 12208, USA.
Nucleic Acids Res. 2003 Dec 15;31(24):7280-301. doi: 10.1093/nar/gkg938.
An RNA molecule, particularly a long-chain mRNA, may exist as a population of structures. Further more, multiple structures have been demonstrated to play important functional roles. Thus, a representation of the ensemble of probable structures is of interest. We present a statistical algorithm to sample rigorously and exactly from the Boltzmann ensemble of secondary structures. The forward step of the algorithm computes the equilibrium partition functions of RNA secondary structures with recent thermodynamic parameters. Using conditional probabilities computed with the partition functions in a recursive sampling process, the backward step of the algorithm quickly generates a statistically representative sample of structures. With cubic run time for the forward step, quadratic run time in the worst case for the sampling step, and quadratic storage, the algorithm is efficient for broad applicability. We demonstrate that, by classifying sampled structures, the algorithm enables a statistical delineation and representation of the Boltzmann ensemble. Applications of the algorithm show that alternative biological structures are revealed through sampling. Statistical sampling provides a means to estimate the probability of any structural motif, with or without constraints. For example, the algorithm enables probability profiling of single-stranded regions in RNA secondary structure. Probability profiling for specific loop types is also illustrated. By overlaying probability profiles, a mutual accessibility plot can be displayed for predicting RNA:RNA interactions. Boltzmann probability-weighted density of states and free energy distributions of sampled structures can be readily computed. We show that a sample of moderate size from the ensemble of an enormous number of possible structures is sufficient to guarantee statistical reproducibility in the estimates of typical sampling statistics. Our applications suggest that the sampling algorithm may be well suited to prediction of mRNA structure and target accessibility. The algorithm is applicable to the rational design of small interfering RNAs (siRNAs), antisense oligonucleotides, and trans-cleaving ribozymes in gene knock-down studies.
RNA分子,尤其是长链mRNA,可能以多种结构形式存在。此外,已证明多种结构发挥着重要的功能作用。因此,对可能结构的集合进行表征很有意义。我们提出了一种统计算法,用于从二级结构的玻尔兹曼系综中进行严格且精确的采样。该算法的前向步骤使用最新的热力学参数计算RNA二级结构的平衡配分函数。在递归采样过程中,利用配分函数计算的条件概率,算法的后向步骤快速生成具有统计代表性的结构样本。前向步骤的运行时间为立方级,采样步骤在最坏情况下的运行时间为二次级,且存储为二次级,该算法具有广泛的适用性且效率较高。我们证明,通过对采样结构进行分类,该算法能够对玻尔兹曼系综进行统计描述和表征。该算法的应用表明,通过采样可以揭示替代的生物学结构。统计采样提供了一种估计任何结构基序概率的方法,无论有无约束条件。例如,该算法能够对RNA二级结构中的单链区域进行概率分析。还展示了特定环类型的概率分析。通过叠加概率分布图,可以显示相互可及性图以预测RNA:RNA相互作用。可以很容易地计算采样结构的玻尔兹曼概率加权态密度和自由能分布。我们表明,从大量可能结构的系综中抽取的中等规模样本足以保证典型采样统计估计中的统计可重复性。我们的应用表明,该采样算法可能非常适合预测mRNA结构和靶标可及性。该算法适用于基因敲降研究中用于合理设计小干扰RNA(siRNA)以及反义寡核苷酸和反式切割核酶。