Suppr超能文献

相似文献

1
A statistical sampling algorithm for RNA secondary structure prediction.
Nucleic Acids Res. 2003 Dec 15;31(24):7280-301. doi: 10.1093/nar/gkg938.
4
Sfold web server for statistical folding and rational design of nucleic acids.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W135-41. doi: 10.1093/nar/gkh449.
5
Exact calculation of loop formation probability identifies folding motifs in RNA secondary structures.
RNA. 2016 Dec;22(12):1808-1818. doi: 10.1261/rna.053694.115. Epub 2016 Oct 19.
7
A bayesian statistical algorithm for RNA secondary structure prediction.
Comput Chem. 1999 Jun 15;23(3-4):387-400. doi: 10.1016/s0097-8485(99)00010-8.
8
Evaluation of a sophisticated SCFG design for RNA secondary structure prediction.
Theory Biosci. 2011 Dec;130(4):313-36. doi: 10.1007/s12064-011-0139-7. Epub 2011 Dec 2.
9
An unbiased adaptive sampling algorithm for the exploration of RNA mutational landscapes under evolutionary pressure.
J Comput Biol. 2011 Nov;18(11):1465-79. doi: 10.1089/cmb.2011.0181. Epub 2011 Oct 28.
10
Efficient algorithms for probing the RNA mutation landscape.
PLoS Comput Biol. 2008 Aug 8;4(8):e1000124. doi: 10.1371/journal.pcbi.1000124.

引用本文的文献

1
mRNA folding algorithms for structure and codon optimization.
Brief Bioinform. 2025 Jul 2;26(4). doi: 10.1093/bib/bbaf386.
2
Modeling RNA duplex dynamics with Gibbs sampling enhances base-pair prediction accuracy and reveals structural activity profiles.
NAR Genom Bioinform. 2025 Jul 17;7(3):lqaf099. doi: 10.1093/nargab/lqaf099. eCollection 2025 Sep.
4
Transformers in RNA structure prediction: A review.
Comput Struct Biotechnol J. 2025 Mar 17;27:1187-1203. doi: 10.1016/j.csbj.2025.03.021. eCollection 2025.
6
IPANEMAP Suite: a pipeline for probing-informed RNA structure modeling.
NAR Genom Bioinform. 2025 Mar 25;7(1):lqaf028. doi: 10.1093/nargab/lqaf028. eCollection 2025 Mar.
7
Two leucine-rich repeat receptor-like kinases initiate herbivory defense responses in tea plants.
Hortic Res. 2024 Oct 2;12(1):uhae281. doi: 10.1093/hr/uhae281. eCollection 2025 Jan.
8
CParty: hierarchically constrained partition function of RNA pseudoknots.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae748.
9
mRNA-miRNA analyses reveal the involvement of CsbHLH1 and miR1446a in the regulation of caffeine biosynthesis in .
Hortic Res. 2023 Dec 29;11(2):uhad282. doi: 10.1093/hr/uhad282. eCollection 2024 Feb.
10

本文引用的文献

1
The structural basis of large ribosomal subunit function.
Annu Rev Biochem. 2003;72:813-50. doi: 10.1146/annurev.biochem.72.110601.135450.
4
Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis.
J Biol Chem. 2003 Feb 28;278(9):7108-18. doi: 10.1074/jbc.M210326200. Epub 2002 Dec 23.
5
Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells.
Nat Biotechnol. 2002 May;20(5):500-5. doi: 10.1038/nbt0502-500.
7
Selecting optimal antisense reagents.
Adv Drug Deliv Rev. 2000 Oct 31;44(1):23-34. doi: 10.1016/s0169-409x(00)00081-8.
8
Calculating nucleic acid secondary structure.
Curr Opin Struct Biol. 2000 Jun;10(3):303-10. doi: 10.1016/s0959-440x(00)00088-9.
9
A bayesian statistical algorithm for RNA secondary structure prediction.
Comput Chem. 1999 Jun 15;23(3-4):387-400. doi: 10.1016/s0097-8485(99)00010-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验