Guo B, Wang Y, Peng C, Luo G P, Le H Q
Photonic Device and System Laboratories, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas 77204-4005, USA.
Appl Spectrosc. 2003 Jul;57(7):811-22. doi: 10.1366/000370203322102906.
Infrared (IR, 3-12-microm) microscopic spectral imaging is an important analytical technique. Many current instruments employ thermal IR light sources, which suffer the problem of low brightness and high noise. This paper evaluates the system engineering merit in using semiconductor lasers, which offer orders-of-magnitude-higher power, brightness, and lower noise. A microscopic spectral imaging system using semiconductor lasers (quantum cascade) as illuminators, and focal plane array detectors demonstrated a high signal-to-noise ratio (> 20 dB) at video frame rate for a large illuminated area. The comparative advantages of laser vs. thermal light source are analyzed and demonstrated. Microscopic spectral imaging with fixed-wavelength and tunable lasers of 4.6-, 5.1-, 6-, and 9.3-microm wavelength was applied to a number of representative samples that consist of biological tissues (plant and animal), solid material (a stack of laminated polymers), and liquid chemical (benzene). Transmission spectral images with approximately 30-dB dynamic range were obtained with clear evidence of spectral features for different samples. The potential of more advanced systems with a wide coverage of spectral bands is discussed.
红外(IR,3 - 12微米)显微光谱成像技术是一项重要的分析技术。目前许多仪器采用热红外光源,存在亮度低和噪声高的问题。本文评估了使用半导体激光器的系统工程优势,半导体激光器具有高几个数量级的功率、亮度以及更低的噪声。一种以半导体激光器(量子级联激光器)作为照明器和焦平面阵列探测器的显微光谱成像系统,在视频帧率下对大面积照明区域展示出高信噪比(> 20 dB)。分析并论证了激光光源相较于热光源的比较优势。利用波长为4.6、5.1、6和9.3微米的固定波长及可调谐激光器进行的显微光谱成像,被应用于多个代表性样品,这些样品包括生物组织(植物和动物)、固体材料(一叠层压聚合物)以及液体化学品(苯)。获得了动态范围约为30 dB的透射光谱图像,清晰显示出不同样品的光谱特征。文中还讨论了具有更宽光谱带覆盖范围的更先进系统的潜力。