Sukcharoenphon Kengkaj, Moran Damian, Schleyer Paul v R, McDonough James E, Abboud Khalil A, Hoff Carl D
Departments of Chemistry, University of Miami, Coral Gables, Florida 33124, USA.
Inorg Chem. 2003 Dec 15;42(25):8494-503. doi: 10.1021/ic034791s.
2-pyridinethione (2-mercaptopyridine, H-2mp) undergoes rapid oxidative addition with 2 mol of the 17-electron organometallic radical Cr(CO)3Cp (where Cp=C5Me5), yielding hydride H-Cr(CO)3Cp* and thiolate (eta1-2mp)Cr(CO)3Cp*. In a slower secondary reaction, (eta1-2mp)Cr(CO)3Cp* loses CO generating the N,S-chelate complex (eta2-2mp)Cr(CO)2Cp* for which the crystal structure is reported. The rate of 2-pyridine thione oxidative addition with Cr(CO)3Cp (abbreviated Cr) in toluene best fits rate=kobs[H-2mp][Cr]; kobs(288 K)=22 +/- 4 M(-1) s(-1); DeltaH++=4 +/- 1 kcal/mol; DeltaS++=- 40 +/- 5 cal/mol K. The rate of reaction is the same under CO or Ar, and the reaction of deuterated 2-pyridine thione (D-2mp) shows a negligible (inverse) kinetic isotope effect (kD/kH=1.06 +/- 0.10). The rate of decarbonylation of (eta1-2mp)Cr(CO)3Cp forming (eta2-2mp)Cr(CO)2Cp obeys simple first-order kinetics with kobs (288 K)=3.1x10(-4) s(-1), DeltaH++=23 +/- 1 kcal/mol, and DeltaS++=+ 5.0 +/- 2 cal/mol K. Reaction of 4-pyridine thione (4-mercaptopyridine, H-4mp) with Cr(CO)3Cp in THF and CH2Cl2 also follows second-order kinetics and is approximately 2-5 times faster than H-2mp in the same solvents. The relatively rapid nature of the thione versus thiol reactions is attributed to differences in the proposed 19-electron intermediate complexes, [(S=C5H4N-H)Cr(CO)3Cp] versus [(H-S-C6H5)Cr(CO)3Cp]. In comparison, reactions of pyridyl disulfides occur by a mechanism similar to that followed by aryl disulfides involving direct attack of the sulfur-sulfur bond by the metal radical. Calorimetric data indicate Cr-SR bond strengths for aryl and pyridyl derivatives are similar. The experimental conclusions are supported by B3LYP/6-311+G(3df,2p) calculations, which also provide additional insight into the reaction pathways open to the thione/thiol tautomers. For example, the reaction between H* radical and the 2-pyridine thione S atom yielding a thionyl radical is exothermic by approximately 30 kcal/mol. In contrast, the thiuranyl radical formed from the addition of H* to the 2-pyridine thiol S atom is predicted to be unstable, eliminating either H* or HS* without barrier.
2-吡啶硫酮(2-巯基吡啶,H-2mp)与2摩尔的17电子有机金属自由基Cr(CO)₃Cp(其中Cp = C₅Me₅)迅速发生氧化加成反应,生成氢化物H-Cr(CO)₃Cp和硫醇盐(η¹-2mp)Cr(CO)₃Cp。在一个较慢的二级反应中,(η¹-2mp)Cr(CO)₃Cp失去CO生成N,S-螯合物(η²-2mp)Cr(CO)₂Cp,并报道了其晶体结构。在甲苯中,2-吡啶硫酮与Cr(CO)₃Cp(缩写为Cr)的氧化加成反应速率最符合速率=kobs[H-2mp][Cr];kobs(288 K)=22±4 M⁻¹ s⁻¹;ΔH⁺⁺=4±1 kcal/mol;ΔS⁺⁺=-40±5 cal/mol K。在CO或Ar气氛下反应速率相同,氘代2-吡啶硫酮(D-2mp)的反应显示出可忽略不计的(反)动力学同位素效应(kD/kH = 1.06±0.10)。(η¹-2mp)Cr(CO)₃Cp脱羰基形成(η²-2mp)Cr(CO)₂Cp的反应遵循简单的一级动力学,kobs(288 K)=3.1×10⁻⁴ s⁻¹,ΔH⁺⁺=23±1 kcal/mol,ΔS⁺⁺=+5.0±2 cal/mol K。4-吡啶硫酮(4-巯基吡啶,H-4mp)与Cr(CO)₃Cp在四氢呋喃和二氯甲烷中的反应也遵循二级动力学,并且在相同溶剂中比H-2mp快约2 - 5倍。硫酮与硫醇反应相对较快的性质归因于所提出的19电子中间体配合物[(S = C₅H₄N - H)Cr(CO)₃Cp]与[(H - S - C₆H₅)Cr(CO)₃Cp]的差异。相比之下,吡啶二硫化物的反应机制与芳基二硫化物类似,涉及金属自由基对硫 - 硫键的直接攻击。量热数据表明芳基和吡啶基衍生物的Cr - SR键强度相似。实验结论得到了B3LYP/6 - 311 + G(3df,2p)计算的支持,该计算还对硫酮/硫醇互变异构体的反应途径提供了额外的见解。例如,H自由基与2-吡啶硫酮S原子反应生成亚硫酰自由基的反应放热约30 kcal/mol。相反,由H加成到2-吡啶硫醇S原子形成的硫铀酰自由基预计是不稳定的,会无势垒地消除H或HS。