Talbot Helen M, Summons Roger, Jahnke Linda, Farrimond Paul
NRG, School of Civil Engineering and Geosciences, Drummond Building, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
Rapid Commun Mass Spectrom. 2003;17(24):2788-96. doi: 10.1002/rcm.1265.
Bacteriohopanepolyols (BHPs) fragment via characteristic pathways during atmospheric pressure chemical ionisation liquid chromatography/ion trap mass spectrometry (APCI-LC/MS(n)). Comparison of the MS(2) spectra of bacteriohopane-32,33,34,35-tetrol (BHT) and 2 beta-methylbacteriohopane-32,33,34,35-tetrol has confirmed the previously proposed ring-C cleavage occurring between C-9 and 11 and C-8 and 14. This fragmentation, diagnostic of all hopanoids, also occurs in BHPs containing an amino group (-NH(2)) at C-35 although the higher relative stability of the ion limits this fragmentation to a minor process after protonation of the basic nitrogen function. Studies of a number of cell cultures including a prochlorophyte (Prochlorothrix hollandica) and a cyanobacterium (Chlorogloeopsis LA) demonstrate the power of this technique to detect composite BHPs with a complex biological functionality at C-35. We also report the first observation of intact pentafunctionalised bacteriohopanepolyols using this method.