Ma Li-Jun, Jha Sharda, Ling Hong, Pozzi Ambra, Ledbetter Steve, Fogo Agnes B
Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
Kidney Int. 2004 Jan;65(1):106-15. doi: 10.1111/j.1523-1755.2004.00381.x.
Transforming growth factor-beta (TGF-beta) modulates immune/inflammatory cells, promotes extracellular matrix (ECM) accumulation, and is increased in fibrotic organs. Here we report the effects of administering a puromycin aminonucleoside nephropathy (PAN)-specific TGF-beta neutralizing antibody on glomerulosclerosis in vivo.
Adult male Sprague-Dawley rats underwent uninephrectomy (Nx) followed by intraperitoneal PAN at weeks 2, 6, 7 and 8. Rats were treated with either high (5 mg/kg body weight) (N= 9) or low (0.5 mg/kg body weight) (N= 7) dose TGF-beta antibody intraperitoneally three times weekly until sacrifice at week 10. A PAN untreated control group (N= 7) was dosed with an isotype specific, null antibody. The nephrectomy samples were studied as normal kidney control (NL) (N= 5). Rats undergoing left kidney Nx (N= 5) only were also included as age-matched control. Renal function and morphology were assessed, and molecular studies performed.
Systolic blood pressure was increased in parallel over time in all groups (at 10 weeks, control 137 +/- 10 mm Hg; high 129 +/- 4 mm Hg; low 137 +/- 3 mm Hg) (P= NS). Both TGF-beta antibody treatments decreased renal cortex mRNA expressions similarly for TGF-beta1, TGF-beta2, and collagen III (TGF-beta1, control 0.36 +/- 0.02 mm Hg; high 0.19 +/- 0.01 mm Hg; low 0.19 +/- 0.02 mm Hg; P < 0.01 low and high vs. control; TGF-beta2, control 0.38 +/- 0.03 mm Hg; high 0.19 +/- 0.02 mm Hg; low 0.20 +/- 0.03 mm Hg; P < 0.01 low and high vs. control; and collagen III, control 0.33 +/- 0.01 mm Hg; high 0.14 +/- 0.01 mm Hg; low 0.19 +/- 0.01 mm Hg; P < 0.01 low and high vs. control; P < 0.05 low vs. high, data expressed as mRNA normalized density units vs. 18S RNA). However, only low dose TGF-beta antibody improved renal function and sclerosis measured by serum creatinine and creatinine clearance (serum creatinine, control 2.3 +/- 0.5 mg/dL; high 2.5 +/- 0.5 mg/dL; low 0.8 +/- 0.1 mg/dL; P < 0.05 low vs. control and high; creatinine clearance, control 0.44 +/- 0.11 mL/min; high 0.70 +/- 0.26 mL/min; low 1.34 +/- 0.30 mL/min; P < 0.05 low vs. control, P= NS vs. high). In parallel, sclerosis index (0 to 4+ scale) was improved in low dose (control 2.67 +/- 0.27; high 2.37 +/- 0.30; low 1.78 +/- 0.24; P < 0.05 low vs. control). This improved function and structure was linked to decreased glomerular infiltrating macrophages (0 to 4+ score, control 2.3 +/- 0.2; high 1.8 +/- 0.4; low 0.8 +/- 0.1; P < 0.01 low vs. control; P < 0.05 low vs. high; P= NS high vs. control). Further, plasminogen activator inhibitor-1 (PAI-1) mRNA expression in renal cortex was attenuated after low dose TGF-beta antibody treatment compared to control and high dose group (PAI-1/glyceraldehyde-3-phosphate dehydrogenase (GAPDH) mRNA ratio, NL 0.18 +/- 0.003; control 0.45 +/- 0.03; high 0.40 +/- 0.04; low 0.23 +/- 0.01; P < 0.05 low vs. control and high). Matrix metalloproteinase-9 (MMP-9) activity was maintained at higher levels in kidneys of the low dose TGF-beta antibody-treated group.
These results show an in vivo dose-response with an agent that blocks the biologic activity of TGF-beta. Higher dose of TGF-beta antibody was without beneficial effect, suggesting that TGF-beta-mediated effects on PAI-1 and macrophage influx are bimodal and closely regulated. Given that both antibody doses reduced the expression of TGF-beta isoforms and collagen III production, but only low dose ameliorated histologic sclerosis, it appears that pharmacologic effects of anti-TGF-beta antibody on matrix synthesis and degradation are not equivalent.
转化生长因子-β(TGF-β)调节免疫/炎症细胞,促进细胞外基质(ECM)积累,且在纤维化器官中水平升高。在此,我们报告给予嘌呤霉素氨基核苷肾病(PAN)特异性TGF-β中和抗体对体内肾小球硬化的影响。
成年雄性Sprague-Dawley大鼠接受单侧肾切除术(Nx),随后在第2、6、7和8周腹腔注射PAN。大鼠每周三次腹腔注射高剂量(5 mg/kg体重)(N = 9)或低剂量(0.5 mg/kg体重)(N = 7)的TGF-β抗体,直至第10周处死。一个未用PAN处理的对照组(N = 7)注射同种型特异性无效抗体。将肾切除样本作为正常肾脏对照(NL)(N = 5)进行研究。仅接受左肾Nx的大鼠(N = 5)也作为年龄匹配对照纳入。评估肾功能和形态,并进行分子研究。
所有组的收缩压随时间平行升高(第10周时,对照组137±10 mmHg;高剂量组129±4 mmHg;低剂量组137±3 mmHg)(P = 无显著性差异)。两种TGF-β抗体处理均类似地降低了肾皮质中TGF-β1、TGF-β2和胶原蛋白III的mRNA表达(TGF-β1,对照组0.36±0.02 mmHg;高剂量组0.19±0.01 mmHg;低剂量组0.19±0.02 mmHg;低剂量组和高剂量组与对照组相比P < 0.01;TGF-β2,对照组0.38±0.03 mmHg;高剂量组0.19±0.02 mmHg;低剂量组0.20±0.03 mmHg;低剂量组和高剂量组与对照组相比P < 0.01;胶原蛋白III,对照组0.33±0.01 mmHg;高剂量组0.14±0.01 mmHg;低剂量组0.19±0.01 mmHg;低剂量组和高剂量组与对照组相比P < 0.01;低剂量组与高剂量组相比P < 0.05,数据以mRNA标准化密度单位与18S RNA表示)。然而,只有低剂量TGF-β抗体改善了通过血清肌酐和肌酐清除率测量的肾功能和硬化程度(血清肌酐,对照组2.3±0.5 mg/dL;高剂量组2.5±0.5 mg/dL;低剂量组0.8±0.1 mg/dL;低剂量组与对照组和高剂量组相比P < 0.05;肌酐清除率,对照组0.44±0.11 mL/min;高剂量组0.70±0.26 mL/min;低剂量组1.34±0.30 mL/min;低剂量组与对照组相比P < 0.05,低剂量组与高剂量组相比P = 无显著性差异)。同时,低剂量组的硬化指数(0至4+分级)得到改善(对照组2.67±0.27;高剂量组2.37±0.30;低剂量组1.78±0.24;低剂量组与对照组相比P < 0.05)。这种功能和结构的改善与肾小球浸润巨噬细胞减少有关(0至4+评分,对照组2.3±0.2;高剂量组1.8±0.4;低剂量组0.8±0.1;低剂量组与对照组相比P < 0.01;低剂量组与高剂量组相比P < 0.05;高剂量组与对照组相比P = 无显著性差异)。此外,与对照组和高剂量组相比,低剂量TGF-β抗体处理后肾皮质中纤溶酶原激活物抑制剂-1(PAI-1)的mRNA表达减弱(PAI-1/甘油醛-3-磷酸脱氢酶(GAPDH)mRNA比值,NL 0.18±0.003;对照组0.45±0.03;高剂量组0.40±0.04;低剂量组0.23±0.01;低剂量组与对照组和高剂量组相比P < 0.05)。低剂量TGF-β抗体处理组肾脏中的基质金属蛋白酶-9(MMP-9)活性维持在较高水平。
这些结果显示了一种体内剂量反应,该药物可阻断TGF-β的生物学活性。高剂量的TGF-β抗体没有有益作用,表明TGF-β对PAI-1和巨噬细胞流入的介导作用是双峰的且受到密切调节。鉴于两种抗体剂量均降低了TGF-β异构体的表达和胶原蛋白III的产生,但只有低剂量改善了组织学硬化程度,看来抗TGF-β抗体对基质合成和降解的药理作用并不等同。