Ruan Benfang, Nakano Hiroaki, Tanaka Masashi, Mills Jonathan A, DeVito Joseph A, Min Bokkee, Low K Brooks, Battista John R, Söll Dieter
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
J Bacteriol. 2004 Jan;186(1):8-14. doi: 10.1128/JB.186.1.8-14.2004.
Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. Söll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.
大多数生物体通过半胱氨酰 - tRNA合成酶(CysRS)的作用形成Cys - tRNA(Cys),这是蛋白质合成的重要组成部分。然而,詹氏甲烷球菌、嗜热栖热甲烷杆菌和坎氏甲烷球菌的基因组中不包含可识别的编码CysRS的cysS基因。据报道,詹氏甲烷球菌的脯氨酰 - tRNA合成酶(C. Stathopoulos、T. Li、R. Longman、U. C. Vothknecht、H. D. Becker、M. Ibba和D. Söll,《科学》287:479 - 482,2000年;R. S. Lipman、K. R. Sowers和Y. M. Hou,《生物化学》39:7792 - 7798,2000年)或詹氏甲烷球菌的MJ1477蛋白(C. Fabrega、M. A. Farrow、B. Mukhopadhyay、V. de Crécy - Lagard、A. R. Ortiz和P. Schimmel,《自然》411:110 - 114,2001年)为体内Cys - tRNA(Cys)的形成提供了“缺失”的CysRS活性。用古菌proS基因(编码脯氨酰 - tRNA合成酶)或与耐辐射球菌DR0705基因(MJ1477基因的直系同源基因)对温度敏感的大肠杆菌cysS(Ts)菌株UQ818进行互补,支持了这些结论。在这里我们表明,大肠杆菌UQ818的CysRS中存在一个突变(V27E);与野生型酶相比,最大的差异是半胱氨酸的K(m)增加了四倍,ATP的k(cat)降低了九倍。虽然用古菌和细菌cysS基因转化的大肠杆菌UQ818转化体在非允许温度下生长,但细胞内半胱氨酸水平升高也能支持生长,例如用大肠杆菌cysE等位基因(编码丝氨酸乙酰转移酶)转化或在培养基中添加半胱氨酸。大肠杆菌cysS缺失菌株允许进行严格的互补试验;生长只能由古菌或细菌cysS基因支持,而不能由古菌proS基因或耐辐射球菌DR0705基因支持。构建耐辐射球菌DR0705缺失菌株表明该基因是可有可无的。然而,删除耐辐射球菌cysS的尝试失败了,这表明这是耐辐射球菌的一个必需基因。这些结果意味着,尚未确定proS或MJ1477基因产物是否在詹氏甲烷球菌中催化Cys - tRNA(Cys)的合成。因此,詹氏甲烷球菌中Cys - tRNA(Cys)形成的机制仍有待发现。