Suppr超能文献

嗜热栖热甲烷球菌中半胱氨酰 - tRNA(Cys)的形成:其机制仍然未知。

Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is still unknown.

作者信息

Ruan Benfang, Nakano Hiroaki, Tanaka Masashi, Mills Jonathan A, DeVito Joseph A, Min Bokkee, Low K Brooks, Battista John R, Söll Dieter

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.

出版信息

J Bacteriol. 2004 Jan;186(1):8-14. doi: 10.1128/JB.186.1.8-14.2004.

Abstract

Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. Söll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.

摘要

大多数生物体通过半胱氨酰 - tRNA合成酶(CysRS)的作用形成Cys - tRNA(Cys),这是蛋白质合成的重要组成部分。然而,詹氏甲烷球菌、嗜热栖热甲烷杆菌和坎氏甲烷球菌的基因组中不包含可识别的编码CysRS的cysS基因。据报道,詹氏甲烷球菌的脯氨酰 - tRNA合成酶(C. Stathopoulos、T. Li、R. Longman、U. C. Vothknecht、H. D. Becker、M. Ibba和D. Söll,《科学》287:479 - 482,2000年;R. S. Lipman、K. R. Sowers和Y. M. Hou,《生物化学》39:7792 - 7798,2000年)或詹氏甲烷球菌的MJ1477蛋白(C. Fabrega、M. A. Farrow、B. Mukhopadhyay、V. de Crécy - Lagard、A. R. Ortiz和P. Schimmel,《自然》411:110 - 114,2001年)为体内Cys - tRNA(Cys)的形成提供了“缺失”的CysRS活性。用古菌proS基因(编码脯氨酰 - tRNA合成酶)或与耐辐射球菌DR0705基因(MJ1477基因的直系同源基因)对温度敏感的大肠杆菌cysS(Ts)菌株UQ818进行互补,支持了这些结论。在这里我们表明,大肠杆菌UQ818的CysRS中存在一个突变(V27E);与野生型酶相比,最大的差异是半胱氨酸的K(m)增加了四倍,ATP的k(cat)降低了九倍。虽然用古菌和细菌cysS基因转化的大肠杆菌UQ818转化体在非允许温度下生长,但细胞内半胱氨酸水平升高也能支持生长,例如用大肠杆菌cysE等位基因(编码丝氨酸乙酰转移酶)转化或在培养基中添加半胱氨酸。大肠杆菌cysS缺失菌株允许进行严格的互补试验;生长只能由古菌或细菌cysS基因支持,而不能由古菌proS基因或耐辐射球菌DR0705基因支持。构建耐辐射球菌DR0705缺失菌株表明该基因是可有可无的。然而,删除耐辐射球菌cysS的尝试失败了,这表明这是耐辐射球菌的一个必需基因。这些结果意味着,尚未确定proS或MJ1477基因产物是否在詹氏甲烷球菌中催化Cys - tRNA(Cys)的合成。因此,詹氏甲烷球菌中Cys - tRNA(Cys)形成的机制仍有待发现。

相似文献

1
Cysteinyl-tRNA(Cys) formation in Methanocaldococcus jannaschii: the mechanism is still unknown.
J Bacteriol. 2004 Jan;186(1):8-14. doi: 10.1128/JB.186.1.8-14.2004.
2
Methanocaldococcus jannaschii prolyl-tRNA synthetase charges tRNA(Pro) with cysteine.
J Biol Chem. 2002 Sep 20;277(38):34749-54. doi: 10.1074/jbc.M206929200. Epub 2002 Jul 18.
3
A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia.
Proc Natl Acad Sci U S A. 2000 Nov 21;97(24):12997-3002. doi: 10.1073/pnas.230444397.
4
Cysteinyl-tRNA synthetase is not essential for viability of the archaeon Methanococcus maripaludis.
Proc Natl Acad Sci U S A. 2001 Dec 4;98(25):14292-7. doi: 10.1073/pnas.201540498. Epub 2001 Nov 20.
5
Synthesis of cysteinyl-tRNACys by a prolyl-tRNA synthetase.
RNA Biol. 2004 May;1(1):35-41. Epub 2004 May 5.
7
Aminoacylation of tRNA with phosphoserine for synthesis of cysteinyl-tRNA(Cys).
Nat Struct Mol Biol. 2008 May;15(5):507-14. doi: 10.1038/nsmb.1423. Epub 2008 Apr 20.
8
RNA-dependent cysteine biosynthesis in archaea.
Science. 2005 Mar 25;307(5717):1969-72. doi: 10.1126/science.1108329.
9
The structural basis of cysteine aminoacylation of tRNAPro by prolyl-tRNA synthetases.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1673-8. doi: 10.1073/pnas.0437911100. Epub 2003 Feb 10.
10
Cysteinyl-tRNA formation: the last puzzle of aminoacyl-tRNA synthesis.
FEBS Lett. 1999 Dec 3;462(3):302-6. doi: 10.1016/s0014-5793(99)01550-1.

引用本文的文献

2
Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics.
J Biol Chem. 2019 Apr 5;294(14):5365-5385. doi: 10.1074/jbc.REV118.002956. Epub 2019 Jan 22.
3
Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia.
Acta Crystallogr D Biol Crystallogr. 2012 Sep;68(Pt 9):1194-200. doi: 10.1107/S0907444912024699. Epub 2012 Aug 18.
4
Quality control despite mistranslation caused by an ambiguous genetic code.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16502-7. doi: 10.1073/pnas.0809179105. Epub 2008 Oct 22.
5
Emergence of the universal genetic code imprinted in an RNA record.
Proc Natl Acad Sci U S A. 2006 Nov 28;103(48):18095-100. doi: 10.1073/pnas.0608762103. Epub 2006 Nov 16.
6
The evolutionary history of Cys-tRNACys formation.
Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19003-8. doi: 10.1073/pnas.0509617102.
7
Evolutionary profiles from the QR factorization of multiple sequence alignments.
Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4045-50. doi: 10.1073/pnas.0409715102. Epub 2005 Mar 1.

本文引用的文献

1
Comparative genomics of Archaea: how much have we learned in six years, and what's next?
Genome Biol. 2003;4(8):115. doi: 10.1186/gb-2003-4-8-115. Epub 2003 Jul 16.
2
Association of an aminoacyl-tRNA synthetase with a putative metabolic protein in archaea.
Biochemistry. 2003 Jun 24;42(24):7487-96. doi: 10.1021/bi0344533.
3
The structural basis of cysteine aminoacylation of tRNAPro by prolyl-tRNA synthetases.
Proc Natl Acad Sci U S A. 2003 Feb 18;100(4):1673-8. doi: 10.1073/pnas.0437911100. Epub 2003 Feb 10.
4
Methanocaldococcus jannaschii prolyl-tRNA synthetase charges tRNA(Pro) with cysteine.
J Biol Chem. 2002 Sep 20;277(38):34749-54. doi: 10.1074/jbc.M206929200. Epub 2002 Jul 18.
5
Cysteine activation is an inherent in vitro property of prolyl-tRNA synthetases.
J Biol Chem. 2002 Sep 20;277(38):34743-8. doi: 10.1074/jbc.M206928200. Epub 2002 Jul 18.
6
Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase.
EMBO J. 2002 Jun 3;21(11):2778-87. doi: 10.1093/emboj/21.11.2778.
7
An array of target-specific screening strains for antibacterial discovery.
Nat Biotechnol. 2002 May;20(5):478-83. doi: 10.1038/nbt0502-478.
8
The complete genome of hyperthermophile Methanopyrus kandleri AV19 and monophyly of archaeal methanogens.
Proc Natl Acad Sci U S A. 2002 Apr 2;99(7):4644-9. doi: 10.1073/pnas.032671499.
9
Prevention of mis-aminoacylation of a dual-specificity aminoacyl-tRNA synthetase.
J Mol Biol. 2002 Feb 1;315(5):943-9. doi: 10.1006/jmbi.2001.5297.
10
Genetic evidence that the uvsE gene product of Deinococcus radiodurans R1 is a UV damage endonuclease.
J Bacteriol. 2002 Feb;184(4):1003-9. doi: 10.1128/jb.184.4.1003-1009.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验