Roche F, Pichot V, Sforza E, Court-Fortune I, Duverney D, Costes F, Garet M, Barthélémy J C
Physiology Laboratory, PPEH Group & Association SYNAPSE, CHU Nord, Faculté de Médecine Jacques Lisfranc, Université Jean Monnet, Saint-Etienne, France.
Eur Respir J. 2003 Dec;22(6):937-42. doi: 10.1183/09031936.03.00104902.
Heart rate fluctuations are a typical finding during obstructive sleep apnoea, characterised by bradycardia during the apnoeic phase and tachycardia at the restoration of ventilation. In this study, a time-frequency domain analysis of the nocturnal heart rate variability (HRV) was evaluated as the single diagnostic marker for obstructive sleep apnoea syndrome (OSAS). The predictive accuracy of time-frequency HRV variables (wavelet (Wv) decomposition parameters from level 2 (Wv2) to level 256 (Wv256)) obtained from nocturnal electrocardiogram Holter monitoring were analysed in 147 consecutive patients aged 53.8+/-11.2 yrs referred for possible OSAS. OSAS was diagnosed in 66 patients (44.9%) according to an apnoea/hypopnoea index > or = 10. Using receiver-operating characteristic curves analysis, the most powerful predictor variable was Wv32 (W 0.758, p<0.0001), followed by Wv16 (W 0.729, p<0.0001) and Wv64 (W 0.700, p<0.0001). Classification and Regression Trees methodology generated a decision tree for OSAS prediction including all levels of Wv coefficients, from Wv2 to Wv256 with a sensitivity reaching 92.4% and a specificity of 90.1% (percentage of agreement 91.2%) with this nonparametric analysis. Time-frequency parameters calculated using wavelet transform and extracted from the nocturnal heart period analysis appeared as powerful tools for obstructive sleep apnoea syndrome diagnosis.
心率波动是阻塞性睡眠呼吸暂停期间的典型表现,其特征为呼吸暂停期心动过缓和通气恢复时心动过速。在本研究中,夜间心率变异性(HRV)的时频域分析被评估为阻塞性睡眠呼吸暂停综合征(OSAS)的单一诊断标志物。对147例年龄为53.8±11.2岁、因可能患有OSAS而接受检查的连续患者,分析了从夜间心电图动态监测获得的时频HRV变量(从第2级(Wv2)到第256级(Wv256)的小波(Wv)分解参数)的预测准确性。根据呼吸暂停/低通气指数≥10,66例患者(44.9%)被诊断为OSAS。使用受试者工作特征曲线分析,最有力的预测变量是Wv32(W 0.758,p<0.0001),其次是Wv16(W 0.729,p<0.0001)和Wv64(W 0.700,p<0.0001)。分类与回归树方法生成了一个用于OSAS预测的决策树,包括从Wv2到Wv256的所有Wv系数水平,该非参数分析的灵敏度达到92.4%,特异性为90.1%(一致性百分比为91.2%)。使用小波变换计算并从夜间心动周期分析中提取的时频参数似乎是阻塞性睡眠呼吸暂停综合征诊断的有力工具。