Peña B, Pérez-García C, Sanz-Anchelergues A, Míguez D G, Muñuzuri A P
Instituto de Física, Universidad de Navarra, E-31080 Pamplona, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Nov;68(5 Pt 2):056206. doi: 10.1103/PhysRevE.68.056206. Epub 2003 Nov 18.
We present a theoretical and experimental study of the sideband instabilities in Turing patterns of stripes. We compare numerical computations of the Brusselator model with experiments in a chlorine dioxide-iodine-malonic acid (CDIMA) reaction in a thin gel layer reactor in contact with a continuously refreshed reservoir of reagents. Spontaneously evolving Turing structures in both systems typically exhibit many defects that break the symmetry of the pattern. Therefore, the study of sideband instabilities requires a method of forcing perfect, spatially periodic Turing patterns with the desired wave number. This is easily achieved in numerical simulations. In experiments, the photosensitivity of the CDIMA reaction permits control and modulation of Turing structures by periodic spatial illumination with a wave number outside the stability region. When a too big wave number is imposed on the pattern, the Eckhaus instability may arise, while for too small wave numbers an instability sets in forming zigzags. By means of the amplitude equation formalism we show that, close to the hexagon-stripe transitions, these sideband instabilities may be preceded by an amplitude instability that grows transient spots locally before reconnecting with stripes. This prediction is tested in both the reaction-diffusion model and the experiment.
我们对条纹状图灵斑图中的边带不稳定性进行了理论和实验研究。我们将布鲁塞尔振子模型的数值计算结果与在与不断更新试剂储库接触的薄凝胶层反应器中进行的二氧化氯 - 碘 - 丙二酸(CDIMA)反应实验进行了比较。两个系统中自发演化的图灵结构通常会出现许多破坏图案对称性的缺陷。因此,研究边带不稳定性需要一种方法来强制产生具有所需波数的完美、空间周期性图灵斑图。这在数值模拟中很容易实现。在实验中,CDIMA反应的光敏性允许通过用稳定性区域之外的波数进行周期性空间照明来控制和调制图灵结构。当给图案施加过大的波数时,可能会出现埃克豪斯不稳定性,而对于过小的波数,会出现形成锯齿状的不稳定性。通过振幅方程形式,我们表明,在接近六边形 - 条纹转变时,这些边带不稳定性之前可能会出现振幅不稳定性,该不稳定性会在局部产生瞬态斑点,然后再与条纹重新连接。这一预测在反应扩散模型和实验中均得到了验证。