Benet L, Leyvraz F, Seligman T H
Centro de Ciencias Físicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos, Mexico.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Oct;68(4 Pt 2):045201. doi: 10.1103/PhysRevE.68.045201. Epub 2003 Oct 21.
We construct an ensemble of second-quantized Hamiltonians with two bosonic degrees of freedom, whose members display with probability one Gaussian orthogonal ensemble (GOE) or Gaussian unitary ensemble (GUE) statistics. Nevertheless, these Hamiltonians have a second integral of motion, namely, the boson number, and thus are integrable. To construct this ensemble we use some "reverse engineering" starting from the fact that n bosons in a two-level system with random interactions have an integrable classical limit by the old Heisenberg association of boson operators to actions and angles. By choosing an n-body random interaction and degenerate levels we end up with GOE or GUE Hamiltonians. Ergodicity of these ensembles completes the example.
我们构建了一个具有两个玻色子自由度的二次量子化哈密顿量系综,其成员以概率1呈现高斯正交系综(GOE)或高斯酉系综(GUE)统计特性。然而,这些哈密顿量具有第二个运动积分,即玻色子数,因此是可积的。为了构建这个系综,我们从这样一个事实出发进行一些“逆向工程”:通过将玻色子算符与作用量和角度进行旧的海森堡关联,具有随机相互作用的两能级系统中的n个玻色子具有可积的经典极限。通过选择一个n体随机相互作用和简并能级,我们最终得到了GOE或GUE哈密顿量。这些系综的遍历性完善了这个例子。