Tsay Mike J, Fatemi Negah, Narindrasorasak Suree, Forbes John R, Sarkar Bibudhendra
Department of Structural Biology and Biochemistry, The Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
Biochim Biophys Acta. 2004 Jan 20;1688(1):78-85. doi: 10.1016/j.bbadis.2003.11.001.
Wilson disease is an autosomal disorder of copper transport caused by mutations in the ATP7B gene encoding a copper-transporting P-type ATPase. The Long Evans Cinnamon (LEC) rat is an established animal model for Wilson disease. We have used structural homology modelling of the N-terminal copper-binding region of the rat atp7b protein (rCBD) to reveal the presence of a domain, the fourth domain (rD4), which was previously thought to be missing from rCBD. Although the CXXC motif is absent from rD4, the overall fold is preserved. Using a wide range of techniques, rCBD is shown to undergo metal-induced secondary and tertiary structural changes similar to WCBD. Competition 65Zn(II)-blot experiments with rCBD demonstrate a binding cooperativity unique to Cu(I). Far-UV circular dichroism (CD) spectra suggest significant secondary structural transformation occurring when 2-3 molar equivalents of Cu(I) is added. Near-UV CD spectra, which indicate tertiary structural transformations, show a proportional decrease in rCBD disulfide bonds upon the incremental addition of Cu(I), and a maximum 5:1 Cu(I) to protein ratio. The similarity of these results to those obtained for the Wilson disease N-terminal copper-binding region (WCBD), which has six copper-binding domains, suggests that the metal-dependent conformational changes observed in both proteins may be largely determined by the protein-protein interactions taking place between the heavy metal-associated (HMA) domains, and remain largely unaffected by the absence of one of the six CXXC copper-binding sites.
威尔逊病是一种由编码铜转运P型ATP酶的ATP7B基因突变引起的常染色体铜转运障碍疾病。长Evans肉桂色(LEC)大鼠是一种已确立的威尔逊病动物模型。我们利用大鼠atp7b蛋白(rCBD)N端铜结合区域的结构同源性建模,揭示了一个结构域的存在,即第四结构域(rD4),此前认为该结构域在rCBD中缺失。尽管rD4中不存在CXXC基序,但整体折叠结构得以保留。使用多种技术表明,rCBD会发生与WCBD类似的金属诱导的二级和三级结构变化。rCBD的65Zn(II)-印迹竞争实验证明了Cu(I)特有的结合协同性。远紫外圆二色性(CD)光谱表明,当加入2-3摩尔当量的Cu(I)时会发生显著的二级结构转变。近紫外CD光谱表明三级结构转变,随着Cu(I)的逐步加入,rCBD二硫键呈比例减少,Cu(I)与蛋白质的最大比例为5:1。这些结果与在具有六个铜结合结构域的威尔逊病N端铜结合区域(WCBD)中获得的结果相似,这表明在这两种蛋白质中观察到的金属依赖性构象变化可能在很大程度上由重金属相关(HMA)结构域之间发生的蛋白质-蛋白质相互作用决定,并且在很大程度上不受六个CXXC铜结合位点之一缺失的影响。