Fang Xueliang, Shao Lei, Zhang Hui, Wang Shaomeng
University of Michigan Comprehensive Cancer Center, Department of Internal Medicine, University of Michigan, 1500 E Medical Center Drive, Ann Arbor, Michigan 48109-0934, USA.
J Chem Inf Comput Sci. 2004 Jan-Feb;44(1):249-57. doi: 10.1021/ci034209i.
In this paper, we describe the development of a set of integrated Web-based tools for mining the National Cancer Institute's (NCI) anticancer databases for anticancer drug discovery. For data mining, three different correlation algorithms were implemented, which included the commonly used Pearson's correlation algorithm available from the NCI's COMPARE program, the Spearman's and Kendall's correlation algorithms. In addition, we implemented the p-value test to evaluate the significance of the correlation results. These Web-based data mining tools allow robust analysis of the correlation between the in vitro anticancer activity of the drugs in the NCI anticancer database, the protein levels and mRNA levels of molecular targets (genes) in the NCI 60 human cancer cell lines for identification of potential lead compounds for a specific molecular target and for study of the molecular mechanism action of a drug. Examples were provided to identify PKC ligands using a lead compound and to identify potential ErbB-2 inhibitors using the mRNA levels of ErbB-2 in the NCI 60 tumor cell lines.
在本文中,我们描述了一套基于网络的集成工具的开发,用于挖掘美国国立癌症研究所(NCI)的抗癌数据库以发现抗癌药物。对于数据挖掘,我们实现了三种不同的相关性算法,其中包括NCI的COMPARE程序中常用的Pearson相关性算法、Spearman相关性算法和Kendall相关性算法。此外,我们还实施了p值检验以评估相关性结果的显著性。这些基于网络的数据挖掘工具能够对NCI抗癌数据库中药物的体外抗癌活性、NCI 60种人类癌细胞系中分子靶点(基因)的蛋白质水平和mRNA水平之间的相关性进行强有力的分析,以识别针对特定分子靶点的潜在先导化合物,并研究药物的分子作用机制。文中提供了使用先导化合物鉴定PKC配体以及利用NCI 60肿瘤细胞系中ErbB-2的mRNA水平鉴定潜在ErbB-2抑制剂的实例。