Suppr超能文献

用于纯交换固态核磁共振光谱学的改进脉冲序列。

Improved pulse sequences for pure exchange solid-state NMR spectroscopy.

作者信息

Vosegaard Thomas, Nielsen Niels C

机构信息

Interdisciplinary Nanoscience Center (iNANO) and Laboratory for Biomolecular NMR Spectroscopy, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark.

出版信息

Magn Reson Chem. 2004 Feb;42(2):285-90. doi: 10.1002/mrc.1339.

Abstract

Spin-exchange experiments are useful for improving the resolution and establishment of sequential assignments in solid-state NMR spectra of uniformly (15)N-labeled proteins oriented macroscopically in phospholipid bilayers. To exploit this advantage fully, it is crucial that the diagonal peaks in the two-dimensional exchange spectra are suppressed. This may be accomplished using the recent pure-exchange (PUREX) experiments, which, however, suffer from up to a threefold reduction of the cross-peak intensity relative to experiments without diagonal-peak suppression. This loss in sensitivity may severely hamper the applicability for the study of membrane proteins. In this paper, we present a two-dimensional exchange experiment (iPUREX) which improves the PUREX sensitivity by 50%. The performance of iPUREX is demonstrated experimentally by proton-mediated (15)N-(15)N spin-exchange experiments for a (15)N-labeled N-acetyl-L-valyl-L-leucine dipeptide. The relevance of exchange experiments with diagonal-peak suppression for large, uniformly (15)N-labeled membrane proteins in oriented phospholipid bilayers is demonstrated numerically for the G-protein coupled receptor rhodopsin.

摘要

自旋交换实验对于提高在磷脂双层中宏观取向的均匀(15)N 标记蛋白质的固态 NMR 谱的分辨率和进行序列归属至关重要。为了充分利用这一优势,二维交换谱中的对角峰被抑制至关重要。这可以通过最近的纯交换(PUREX)实验来实现,然而,相对于没有对角峰抑制的实验,其交叉峰强度最多降低了三倍。这种灵敏度的损失可能会严重阻碍其在膜蛋白研究中的适用性。在本文中,我们提出了一种二维交换实验(iPUREX),它将 PUREX 的灵敏度提高了 50%。通过质子介导的(15)N-(15)N 自旋交换实验对(15)N 标记的 N-乙酰-L-缬氨酰-L-亮氨酸二肽进行实验,证明了 iPUREX 的性能。对于 G 蛋白偶联受体视紫红质,通过数值模拟证明了在取向磷脂双层中对大的、均匀(15)N 标记的膜蛋白进行有对角峰抑制的交换实验的相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验