Suppr超能文献

在高心脏工作负荷下,胞质NADH向线粒体的转运受限。

Limited transfer of cytosolic NADH into mitochondria at high cardiac workload.

作者信息

O'Donnell J Michael, Kudej Raymond K, LaNoue Kathyrn F, Vatner Stephen F, Lewandowski E Douglas

机构信息

Program in Integrative Cardiac Metabolism (MC 901), Dept. of Physiology and Biophysics, University of Illinois College of Medicine, 835 S. Wolcott Avenue, Chicago, IL 60612-7342, USA.

出版信息

Am J Physiol Heart Circ Physiol. 2004 Jun;286(6):H2237-42. doi: 10.1152/ajpheart.01113.2003. Epub 2004 Jan 29.

Abstract

Glycolysis supplements energy synthesis at high cardiac workloads, producing not only ATP but also cytosolic NADH and pyruvate for oxidative ATP synthesis. Despite adequate Po(2), speculation exists that not all cytosolic NADH is oxidized by the mitochondria, leading to lactate production. In this study, we elucidate the mechanism for limited cytosolic NADH oxidation and increased lactate production at high workload despite adequate myocardial blood flow and oxygenation. Reducing equivalents from glycolysis enter mitochondria via exchange of mitochondrial alpha-ketoglutarate (alpha-KG) for cytosolic malate. This exchange was monitored at baseline and at high workloads by comparing (13)C enrichment between the products of alpha-KG oxidation (succinate) and alpha-KG efflux from mitochondria (glutamate). Under general anesthesia, a left thoracotomy was performed on 14 dogs and [2-(13)C]acetate was infused into the left anterior descending artery for 40 min. The rate-pressure product was 9,035 +/- 1,972 and 21,659 +/- 5,266 mmHg.beats.min(-1) (n = 7) at baseline (n = 7) and with dobutamine, respectively. (13)C enrichment of succinate was 57 +/- 10% at baseline and 45 +/- 13% at elevated workload (not significant), confirming oxidation of [2-(13)C]acetate. However, cytosolic glutamate enrichment, a marker of cytosolic NADH transfer to mitochondria, was dramatically reduced at high cardiac workload (11 +/- 1%) vs. baseline (50 +/- 14%, P < 0.05). This reduced exchange of (13)C from alpha-KG to cytosolic glutamate at high work indicates reduced shuttling of cytosolic reducing equivalents into the mitochondria. Myocardial tissue lactate increased 78%, countering this reduced oxidation of cytosolic NADH. The findings elucidate a contributing mechanism to glycolysis outpacing glucose oxidation in the absence of myocardial ischemia.

摘要

糖酵解在高心脏工作负荷时补充能量合成,不仅产生三磷酸腺苷(ATP),还产生胞质烟酰胺腺嘌呤二核苷酸(NADH)和丙酮酸用于氧化ATP合成。尽管氧分压(Po₂)充足,但仍有人推测并非所有胞质NADH都被线粒体氧化,从而导致乳酸生成。在本研究中,我们阐明了在心肌血流和氧合充足的情况下,高工作负荷时胞质NADH氧化受限和乳酸生成增加的机制。糖酵解产生的还原当量通过线粒体α-酮戊二酸(α-KG)与胞质苹果酸的交换进入线粒体。通过比较α-KG氧化产物(琥珀酸)和线粒体α-KG流出产物(谷氨酸)之间的¹³C富集情况,在基线和高工作负荷时监测这种交换。在全身麻醉下,对14只犬进行左胸切开术,并将[2-¹³C]乙酸注入左前降支动脉40分钟。基线时(n = 7)和使用多巴酚丁胺时的速率-压力乘积分别为9,035 ± 1,972和21,659 ± 5,266 mmHg·次/分钟(n = 7)。基线时琥珀酸的¹³C富集为57 ± 10%,高工作负荷时为45 ± 13%(无显著差异),证实了[2-¹³C]乙酸的氧化。然而,作为胞质NADH向线粒体转移标志物的胞质谷氨酸富集在高心脏工作负荷时(11 ± 1%)与基线时(50 ± 14%,P < 0.05)相比显著降低。高工作时这种从α-KG到胞质谷氨酸的¹³C交换减少表明胞质还原当量向线粒体的穿梭减少。心肌组织乳酸增加了78%,抵消了胞质NADH氧化的减少。这些发现阐明了在无心肌缺血情况下糖酵解超过葡萄糖氧化的一个促成机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验