Ewert Kai, Slack Nelle L, Ahmad Ayesha, Evans Heather M, Lin Alison J, Samuel Charles E, Safinya Cyrus R
Materials Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-5121, USA.
Curr Med Chem. 2004 Jan;11(2):133-49. doi: 10.2174/0929867043456160.
Cationic liposomes (CLs) are used as gene vectors (carriers) in worldwide human clinical trials of non-viral gene therapy. These lipid-gene complexes have the potential of transferring large pieces of DNA of up to 1 million base-pairs into cells. As our understanding of the mechanisms of action of CL-DNA complexes remains poor, transfection efficiencies are still low when compared to gene delivery with viral vectors. We describe recent studies with a combination of techniques (synchrotron x-ray diffraction for structure determination, laser-scanning confocal microscopy to probe the interactions of CL-DNA particles with cells, and luciferase reporter-gene expression assays to measure transfection efficiencies in mammalian cells), which collectively are beginning to unravel the relationship between the distinctly structured CL-DNA complexes and their transfection efficiency. The work described here is applicable to transfection optimization in ex vivo cell transfection, where cells are removed and returned to patients after transfection. CL-DNA complexes primarily form a multilayered sandwich structure with DNA layered between the cationic lipids (labeled L(alpha)(C)). On rare occasions, an inverted hexagonal structure with DNA encapsulated in lipid tubules (labeled H(II)(C)) is observed. A major recent insight is that for L(alpha)(C) complexes the membrane charge density sigma(M) of the CL-vector, rather than the charge of the cationic lipid alone, is a key universal parameter that governs the transfection efficiency of L(alpha)(C) complexes in cells. The parameter sigma(M) is a measure of the average charge per unit area of the membrane, thus taking into account the amount of neutral lipids. In contrast to L(alpha)(C) complexes, H(II)(C) complexes containing the lipid 1,2-dioleoyl-sn-glycerophosphatidylethanolamine (DOPE) exhibit no dependence on sigma(M). The current limiting factor to transfection by cationic lipid vectors appears to be the tight association of a fraction of the delivered exogenous DNA with cationic cellular molecules, which may prevent optimal transcriptional activity. Future directions are outlined, which make use of surface-functionalized CL-DNA complexes suitable for transfection in vivo.
阳离子脂质体(CLs)在全球范围内的非病毒基因治疗人体临床试验中被用作基因载体。这些脂质-基因复合物有潜力将长达100万个碱基对的大片段DNA转移到细胞中。由于我们对CL-DNA复合物作用机制的了解仍然有限,与病毒载体介导的基因传递相比,转染效率仍然很低。我们描述了最近结合多种技术进行的研究(利用同步加速器X射线衍射确定结构、激光扫描共聚焦显微镜探测CL-DNA颗粒与细胞的相互作用,以及荧光素酶报告基因表达测定法测量哺乳动物细胞中的转染效率),这些研究共同开始揭示结构独特的CL-DNA复合物与其转染效率之间的关系。这里描述的工作适用于体外细胞转染中的转染优化,即在转染后将细胞取出再回输到患者体内的情况。CL-DNA复合物主要形成多层夹心结构,DNA夹在阳离子脂质(标记为L(α)(C))之间。在极少数情况下,会观察到一种反相六角结构,其中DNA被包裹在脂质小管中(标记为H(II)(C))。最近的一个重要见解是,对于L(α)(C)复合物,CL载体的膜电荷密度σ(M),而不是单独阳离子脂质的电荷,是决定L(α)(C)复合物在细胞中转染效率的关键通用参数。参数σ(M)是膜单位面积平均电荷的量度,因此考虑了中性脂质的量。与L(α)(C)复合物不同,含有脂质1,2-二油酰基-sn-甘油磷脂酰乙醇胺(DOPE)的H(II)(C)复合物对σ(M)没有依赖性。阳离子脂质载体转染的当前限制因素似乎是一部分递送的外源DNA与阳离子细胞分子紧密结合,这可能会阻止最佳转录活性。文中概述了未来的方向,即利用适合体内转染的表面功能化CL-DNA复合物。