Sathish Hasige A, Koteiche Hanane A, McHaourab Hassane S
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA.
J Biol Chem. 2004 Apr 16;279(16):16425-32. doi: 10.1074/jbc.M313402200. Epub 2004 Feb 3.
Age-related changes in protein-protein interactions in the lens play a critical role in the temporal evolution of its optical properties. In the relatively non-regenerating environment of the fiber cells, a critical determinant of these interactions is partial or global unfolding as a consequence of post-translational modifications or chemical damage to individual crystallins. One type of attractive force involves the recognition by alpha-crystallins of modified proteins prone to unfolding and aggregation. In this paper, we explore the energetic threshold and the structural determinants for the formation of a stable complex between alpha-crystallin and betaB2-crystallin as a consequence of destabilizing mutations in the latter. The mutations were designed in the framework of a folding model that proposes the equilibrium population of a monomeric intermediate. Binding to alpha-crystallin is detected through changes in the emission properties of a bimane fluorescent probe site-specifically introduced at a solvent exposed site in betaB2-crystallin. alpha-Crystallin binds the various betaB2-crystallin mutants, although with a significantly lower affinity relative to destabilized T4 lysozyme mutants. The extent of binding, while reflective of the overall destabilization, is determined by the dynamic population of a folding intermediate. The existence of the intermediate is inferred from the biphasic bimane emission unfolding curve of a mutant designed to disrupt interactions at the dimer interface. The results of this paper are consistent with a model in which the interaction of alpha-crystallins with substrates is not solely triggered by an energetic threshold but also by the population of excited states even under favorable folding conditions. The ability of alpha-crystallin to detect subtle changes in the population of betaB2-crystallin excited states supports a central role for this chaperone in delaying aggregation and scattering in the lens.
晶状体中蛋白质 - 蛋白质相互作用的年龄相关性变化在其光学特性的时间演变中起着关键作用。在纤维细胞相对不可再生的环境中,这些相互作用的一个关键决定因素是由于翻译后修饰或个别晶状体蛋白的化学损伤导致的部分或整体去折叠。一种吸引力涉及α - 晶状体蛋白对易于去折叠和聚集的修饰蛋白的识别。在本文中,我们探讨了由于βB2 - 晶状体蛋白中的去稳定化突变而形成α - 晶状体蛋白与βB2 - 晶状体蛋白之间稳定复合物的能量阈值和结构决定因素。这些突变是在一个折叠模型的框架内设计的,该模型提出了单体中间体的平衡群体。通过特异性引入到βB2 - 晶状体蛋白溶剂暴露位点的双硫腙荧光探针的发射特性变化来检测与α - 晶状体蛋白的结合。α - 晶状体蛋白与各种βB2 - 晶状体蛋白突变体结合,尽管相对于去稳定化的T4溶菌酶突变体,其亲和力显著降低。结合程度虽然反映了整体去稳定化,但由折叠中间体的动态群体决定。中间体的存在是从设计用于破坏二聚体界面相互作用的突变体的双相双硫腙发射去折叠曲线推断出来的。本文的结果与一个模型一致,在该模型中,α - 晶状体蛋白与底物的相互作用不仅由能量阈值触发,而且即使在有利的折叠条件下也由激发态群体触发。α - 晶状体蛋白检测βB2 - 晶状体蛋白激发态群体细微变化的能力支持了这种伴侣蛋白在延迟晶状体中的聚集和散射方面的核心作用。