Gros Laurent, Maksimenko Andrei V, Privezentzev Cyril V, Laval Jacques, Saparbaev Murat K
Groupe "Réparation de l'ADN," CNRS Unité Mixte de Recherche 8113/LBPA-ENS Cachan, Institut Gustave Roussy, 39, rue Camille Desmoulins, 94805 Villejuif Cedex, France.
J Biol Chem. 2004 Apr 23;279(17):17723-30. doi: 10.1074/jbc.M314010200. Epub 2004 Feb 2.
Lipid peroxidation generates aldehydes, which react with DNA bases, forming genotoxic exocyclic etheno(epsilon)-adducts. E-bases have been implicated in vinyl chloride-induced carcinogenesis, and increased levels of these DNA lesions formed by endogenous processes are found in human degenerative disorders. E-adducts are repaired by the base excision repair pathway. Here, we report the efficient biological hijacking of the human alkyl-N-purine-DNA glycosylase (ANPG) by 3,N(4)-ethenocytosine (epsilonC) when present in DNA. Unlike the ethenopurines, ANPG does not excise, but binds to epsilonC when present in either double-stranded or single-stranded DNA. We developed a direct assay, based on the fluorescence quenching mechanism of molecular beacons, to measure a DNA glycosylase activity. Molecular beacons containing modified residues have been used to demonstrate that the epsilonC.ANPG interaction inhibits excision repair both in reconstituted systems and in cultured human cells. Furthermore, we show that the epsilonC.ANPG complex blocks primer extension by the Klenow fragment of DNA polymerase I. These results suggest that epsilonC could be more genotoxic than 1,N(6)-ethenoadenine (epsilonA) residues in vivo. The proposed model of ANPG-mediated genotoxicity of epsilonC provides a new insight in the molecular basis of lipid peroxidation-induced cell death and genome instability in cancer.
脂质过氧化作用会产生醛类,醛类与DNA碱基发生反应,形成具有基因毒性的外环乙烯基(ε)-加合物。ε-碱基与氯乙烯诱导的致癌作用有关,在人类退行性疾病中也发现由内源性过程形成的这些DNA损伤水平有所增加。ε-加合物通过碱基切除修复途径进行修复。在此,我们报告当DNA中存在3,N⁴-乙烯基胞嘧啶(εC)时,它能有效地对人类烷基-N-嘌呤-DNA糖基化酶(ANPG)进行生物学劫持。与乙烯基嘌呤不同,当εC存在于双链或单链DNA中时,ANPG不会切除它,而是与之结合。我们基于分子信标的荧光猝灭机制开发了一种直接检测方法,用于测量DNA糖基化酶活性。含有修饰残基的分子信标已被用于证明εC与ANPG的相互作用在重组系统和培养的人类细胞中均会抑制切除修复。此外,我们还表明εC-ANPG复合物会阻断DNA聚合酶I的Klenow片段进行引物延伸。这些结果表明,在体内εC可能比1,N⁶-乙烯基腺嘌呤(εA)残基具有更强的基因毒性。所提出的ANPG介导的εC基因毒性模型为脂质过氧化诱导的细胞死亡和癌症中基因组不稳定的分子基础提供了新的见解。