Suppr超能文献

Simulation of the motor units control during a fast elbow flexion in the sagittal plane.

作者信息

Raikova R T, Aladjov Hr Ts

机构信息

Bulgarian Academy of Sciences, Centre of Biomedical Engineering, Acad. G.Bonchev Str., Bl.105, Sofia 1113, Bulgaria.

出版信息

J Electromyogr Kinesiol. 2004 Apr;14(2):227-38. doi: 10.1016/j.jelekin.2003.08.003.

Abstract

The fact that muscles are composed of different Motor Units (MUs) is often neglected when investigating motor control by macro models of human musculo-skeletal-joint systems. Each muscle is associated with one control signal. This simplification leads to difficulties when mechanical and electrical manifestations of the muscle activity are juxtaposed. That is why a new approach for muscle modelling was recently proposed (Journal of Biomechanics 2002;35:1123-1135). It is based on MUs twitches and a Hierarchical Genetic Algorithm (HGA) is implemented for choosing the moments of activation of the individual MUs, thus simulating the control of the nervous system. Its basic benefit is obtaining the complete information about the mechanical and activation behaviour of all MUs, respectively muscles, during the whole motion. Its possibilities are demonstrated when simulating fast elbow flexion. Three flexor and two extensor muscles, each consisting of approximately real number of different types of MUs, are modelled. The task is highly indeterminate and the optimization is performed according to a fitness function that is an assessed combination of criteria (minimal deviation from the given joint moment, minimal total muscle force and minimal MUs activation). The influence of the weight of the first criterion (the one that reflects the importance of the movement accuracy on the predicted results), is investigated. Two variants concerning the muscle MUs structure are also compared: each muscle is composed of four distinct types MUs and the MUs twitch parameters are uniformly distributed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验