Suppr超能文献

基因表达数据中方差成分的分析。

Analysis of variance components in gene expression data.

作者信息

Chen James J, Delongchamp Robert R, Tsai Chen-An, Hsueh Huey-miin, Sistare Frank, Thompson Karol L, Desai Varsha G, Fuscoe James C

机构信息

Division of Biometry and Risk Assessment, National Center for Toxicology Research, Food and Drug Administration, Jefferson, AR 72079, USA.

出版信息

Bioinformatics. 2004 Jun 12;20(9):1436-46. doi: 10.1093/bioinformatics/bth118. Epub 2004 Feb 12.

Abstract

MOTIVATION

A microarray experiment is a multi-step process, and each step is a potential source of variation. There are two major sources of variation: biological variation and technical variation. This study presents a variance-components approach to investigating animal-to-animal, between-array, within-array and day-to-day variations for two data sets. The first data set involved estimation of technical variances for pooled control and pooled treated RNA samples. The variance components included between-array, and two nested within-array variances: between-section (the upper- and lower-sections of the array are replicates) and within-section (two adjacent spots of the same gene are printed within each section). The second experiment was conducted on four different weeks. Each week there were reference and test samples with a dye-flip replicate in two hybridization days. The variance components included week-to-week, animal-to-animal and between-array and within-array variances.

RESULTS

We applied the linear mixed-effects model to quantify different sources of variation. In the first data set, we found that the between-array variance is greater than the between-section variance, which, in turn, is greater than the within-section variance. In the second data set, for the reference samples, the week-to-week variance is larger than the between-array variance, which, in turn, is slightly larger than the within-array variance. For the test samples, the week-to-week variance has the largest variation. The animal-to-animal variance is slightly larger than the between-array and within-array variances. However, in a gene-by-gene analysis, the animal-to-animal variance is smaller than the between-array variance in four out of five housekeeping genes. In summary, the largest variation observed is the week-to-week effect. Another important source of variability is the animal-to-animal variation. Finally, we describe the use of variance-component estimates to determine optimal numbers of animals, arrays per animal and sections per array in planning microarray experiments.

摘要

动机

微阵列实验是一个多步骤过程,且每个步骤都是潜在的变异来源。主要有两个变异来源:生物学变异和技术变异。本研究提出一种方差成分法,用于调查两个数据集在动物个体间、芯片间、芯片内以及日复一日的变异情况。第一个数据集涉及对混合对照和混合处理RNA样本的技术方差估计。方差成分包括芯片间方差,以及两个嵌套的芯片内方差:区间间方差(芯片的上部和下部是重复样本)和区间内方差(每个区间内打印同一基因的两个相邻斑点)。第二个实验在四个不同的星期进行。每周有参考样本和测试样本,并在两个杂交日进行染料翻转重复实验。方差成分包括周与周之间、动物个体间、芯片间和芯片内方差。

结果

我们应用线性混合效应模型来量化不同的变异来源。在第一个数据集中,我们发现芯片间方差大于区间间方差,而区间间方差又大于区间内方差。在第二个数据集中,对于参考样本,周与周之间的方差大于芯片间方差,芯片间方差又略大于芯片内方差。对于测试样本,周与周之间的方差变异最大。动物个体间方差略大于芯片间和芯片内方差。然而,在逐个基因分析中,五个看家基因中有四个基因的动物个体间方差小于芯片间方差。总之,观察到的最大变异是周与周之间的效应。另一个重要的变异来源是动物个体间变异。最后,我们描述了如何使用方差成分估计来确定在规划微阵列实验时动物的最佳数量、每只动物的芯片数量以及每个芯片的区间数量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验