Suppr超能文献

基因内的微卫星:结构、功能及进化

Microsatellites within genes: structure, function, and evolution.

作者信息

Li You-Chun, Korol Abraham B, Fahima Tzion, Nevo Eviatar

机构信息

Institute of Evolution, University of Haifa, Haifa, Israel.

出版信息

Mol Biol Evol. 2004 Jun;21(6):991-1007. doi: 10.1093/molbev/msh073. Epub 2004 Feb 12.

Abstract

Recently, increasingly more microsatellites, or simple sequence repeats (SSRs) have been found and characterized within protein-coding genes and their untranslated regions (UTRs). These data provide useful information to study possible SSR functions. Here, we review SSR distributions within expressed sequence tags (ESTs) and genes including protein-coding, 3'-UTRs and 5'-UTRs, and introns; and discuss the consequences of SSR repeat-number changes in those regions of both prokaryotes and eukaryotes. Strong evidence shows that SSRs are nonrandomly distributed across protein-coding regions, UTRs, and introns. Substantial data indicates that SSR expansions and/or contractions in protein-coding regions can lead to a gain or loss of gene function via frameshift mutation or expanded toxic mRNA. SSR variations in 5'-UTRs could regulate gene expression by affecting transcription and translation. The SSR expansions in the 3'-UTRs cause transcription slippage and produce expanded mRNA, which can be accumulated as nuclear foci, and which can disrupt splicing and, possibly, disrupt other cellular function. Intronic SSRs can affect gene transcription, mRNA splicing, or export to cytoplasm. Triplet SSRs located in the UTRs or intron can also induce heterochromatin-mediated-like gene silencing. All these effects caused by SSR expansions or contractions within genes can eventually lead to phenotypic changes. SSRs within genes evolve through mutational processes similar to those for SSRs located in other genomic regions including replication slippage, point mutation, and recombination. These mutational processes generate DNA changes that should be connected by DNA mismatch repair (MMR) system. Mutation that has escaped from the MMR system correction would become new alleles at the SSR loci, and then regulate and/or change gene products, and eventually lead to phenotype changes. Therefore, SSRs within genes should be subjected to stronger selective pressure than other genomic regions because of their functional importance. These SSRs may provide a molecular basis for fast adaptation to environmental changes in both prokaryotes and eukaryotes.

摘要

最近,越来越多的微卫星,即简单序列重复(SSR),在蛋白质编码基因及其非翻译区(UTR)中被发现并得以表征。这些数据为研究SSR的可能功能提供了有用信息。在此,我们综述了表达序列标签(EST)和基因(包括蛋白质编码区、3'-UTR、5'-UTR和内含子)中的SSR分布情况;并讨论了原核生物和真核生物中这些区域SSR重复数变化的后果。有力证据表明,SSR在蛋白质编码区、UTR和内含子中的分布并非随机。大量数据表明,蛋白质编码区的SSR扩增和/或收缩可通过移码突变或扩展的毒性mRNA导致基因功能的获得或丧失。5'-UTR中的SSR变异可通过影响转录和翻译来调节基因表达。3'-UTR中的SSR扩增会导致转录滑动并产生扩展的mRNA,其可作为核灶积累,并可能破坏剪接以及其他细胞功能。内含子SSR可影响基因转录、mRNA剪接或向细胞质的输出。位于UTR或内含子中的三联体SSR也可诱导异染色质介导的基因沉默。基因内SSR扩增或收缩所导致的所有这些效应最终都可能导致表型变化。基因内的SSR通过与位于其他基因组区域(包括复制滑动、点突变和重组)的SSR相似的突变过程进化。这些突变过程产生的DNA变化应由DNA错配修复(MMR)系统连接起来。逃脱MMR系统校正的突变将成为SSR位点的新等位基因,进而调节和/或改变基因产物,并最终导致表型变化。因此,由于其功能重要性,基因内的SSR应比其他基因组区域受到更强的选择压力。这些SSR可能为原核生物和真核生物快速适应环境变化提供分子基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验