Suppr超能文献

痘苗病毒A36R膜蛋白在细胞内包膜病毒粒子与微管动力蛋白驱动蛋白之间提供了直接联系。

Vaccinia virus A36R membrane protein provides a direct link between intracellular enveloped virions and the microtubule motor kinesin.

作者信息

Ward Brian M, Moss Bernard

机构信息

Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0445, USA.

出版信息

J Virol. 2004 Mar;78(5):2486-93. doi: 10.1128/jvi.78.5.2486-2493.2004.

Abstract

Previous work demonstrated that intracellular enveloped vaccinia virus virions use microtubules to move from the site of membrane wrapping to the cell periphery. The mechanism and direction of intracellular virion movement predicted that viral proteins directly or indirectly interact with the microtubule motor protein kinesin. The yeast two-hybrid assay was used to test for interactions between the light chain of kinesin and the cytoplasmic tails from five viral envelope proteins. We found that the N-terminal tetratricopeptide repeat region of the kinesin light chain (KLC-TPR) interacted with the cytoplasmic tail of the viral A36R protein. A series of C- and N-terminal truncations of A36R further defined a region from residues 81 to 111 that was sufficient for interaction with KLC-TPR. Interactions were confirmed by using pull-down assays with purified glutathione S-transferase (GST)-A36R and (35)S-labeled KLC-TPR. The defined region on A36R for interaction with kinesin overlaps the recently defined region (residues 91 to 111) for interaction with the A33R envelope protein. The yeast three-hybrid system was used to demonstrate that expression of A33R interrupted the interaction between A36R and KLC-TPR, indicating that the binding of A36R is mutually exclusive to either A33R or kinesin. Pull-down assays with purified GST-A36R and (35)S-labeled KLC-TPR in the presence of competing A33R corroborated these findings. Collectively, these results demonstrated that the viral A36R protein interacts directly with the microtubule motor protein kinesin and that the viral protein A33R may regulate this interaction.

摘要

先前的研究表明,细胞内包被的痘苗病毒粒子利用微管从膜包裹位点移动到细胞周边。细胞内病毒粒子移动的机制和方向预测病毒蛋白直接或间接与微管运动蛋白驱动蛋白相互作用。酵母双杂交试验用于检测驱动蛋白轻链与五种病毒包膜蛋白的细胞质尾巴之间的相互作用。我们发现驱动蛋白轻链的N端四肽重复区域(KLC - TPR)与病毒A36R蛋白的细胞质尾巴相互作用。A36R的一系列C端和N端截短进一步确定了一个81至111位残基的区域,该区域足以与KLC - TPR相互作用。通过使用纯化的谷胱甘肽S - 转移酶(GST)- A36R和(35)S标记的KLC - TPR进行下拉试验,证实了相互作用。A36R上与驱动蛋白相互作用的确定区域与最近确定的与A33R包膜蛋白相互作用的区域(91至111位残基)重叠。酵母三杂交系统用于证明A33R的表达中断了A36R与KLC - TPR之间的相互作用,表明A36R与A33R或驱动蛋白的结合是相互排斥的。在存在竞争性A33R的情况下,用纯化的GST - A36R和(35)S标记的KLC - TPR进行下拉试验证实了这些发现。总的来说,这些结果表明病毒A36R蛋白直接与微管运动蛋白驱动蛋白相互作用,并且病毒蛋白A33R可能调节这种相互作用。

相似文献

4
Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus.
Nat Cell Biol. 2001 Nov;3(11):992-1000. doi: 10.1038/ncb1101-992.
5
Vaccinia virus protein complex F12/E2 interacts with kinesin light chain isoform 2 to engage the kinesin-1 motor complex.
PLoS Pathog. 2015 Mar 11;11(3):e1004723. doi: 10.1371/journal.ppat.1004723. eCollection 2015 Mar.
8
SRC mediates a switch from microtubule- to actin-based motility of vaccinia virus.
Science. 2004 Oct 1;306(5693):124-9. doi: 10.1126/science.1101509. Epub 2004 Aug 5.

引用本文的文献

2
The amount of Nck rather than N-WASP correlates with the rate of actin-based motility of Vaccinia virus.
Microbiol Spectr. 2023 Dec 12;11(6):e0152923. doi: 10.1128/spectrum.01529-23. Epub 2023 Oct 19.
3
Kinesin-1 transports morphologically distinct intracellular virions during vaccinia infection.
J Cell Sci. 2023 Mar 1;136(5). doi: 10.1242/jcs.260175. Epub 2022 Sep 30.
5
Effect of Clinically Used Microtubule Targeting Drugs on Viral Infection and Transport Function.
Int J Mol Sci. 2022 Mar 22;23(7):3448. doi: 10.3390/ijms23073448.
9
Tagging of the vaccinia virus protein F13 with mCherry causes aberrant virion morphogenesis.
J Gen Virol. 2017 Oct;98(10):2543-2555. doi: 10.1099/jgv.0.000917.
10
Vaccinia virus egress mediated by virus protein A36 is reliant on the F12 protein.
J Gen Virol. 2017 Jun;98(6):1500-1514. doi: 10.1099/jgv.0.000816. Epub 2017 Jun 20.

本文引用的文献

1
Affinity purification of proteins binding to GST fusion proteins.
Curr Protoc Mol Biol. 2001 May;Chapter 20:Unit 20.2. doi: 10.1002/0471142727.mb2002s33.
2
The development of vaccinia virus in Earle's L strain cells as examined by electron microscopy.
J Biophys Biochem Cytol. 1961 Aug;10(4):475-503. doi: 10.1083/jcb.10.4.475.
4
Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus.
Curr Biol. 2002 Apr 30;12(9):740-5. doi: 10.1016/s0960-9822(02)00812-6.
7
Kinesin-dependent movement on microtubules precedes actin-based motility of vaccinia virus.
Nat Cell Biol. 2001 Nov;3(11):992-1000. doi: 10.1038/ncb1101-992.
8
Vaccinia virus intracellular movement is associated with microtubules and independent of actin tails.
J Virol. 2001 Dec;75(23):11651-63. doi: 10.1128/JVI.75.23.11651-11663.2001.
9
Movements of vaccinia virus intracellular enveloped virions with GFP tagged to the F13L envelope protein.
J Gen Virol. 2001 Nov;82(Pt 11):2747-2760. doi: 10.1099/0022-1317-82-11-2747.
10
Three-hybrid screens. Inducible third-party systems.
Methods Mol Biol. 2001;177:271-89. doi: 10.1385/1-59259-210-4:271.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验