Leppek Ronald, Hoos Olaf, Sattler Alexander, Kohle Sven, Azzam Simon, Al Haffar Iyad, Keil Boris, Ricken Philip, Klose Klaus J, Alfke Heiko
Medizinisches Zentrum für Radiologie, Klinik für Strahlendiagnostik, Philipps-Universität Marburg, Marburg.
Herz. 2004 Feb;29(1):32-46. doi: 10.1007/s00059-004-2532-1.
This article describes the potential of dynamic contrast- enhanced magnetic resonance tomography (DCE-MRT) for the visualization and quantification of blood flow of lower leg muscles at rest and after individually adjusted muscular exercise.
Five cases were chosen to exemplify the qualitative and semi-quantitative blood flow evaluation in the lower leg muscles. The crural muscle state was determined with an isometric maximal strength measurement from a female patient with peripheral arterial occlusive disease (pAVK), a male patient with coronary heart disease (KHK) without clinical signs of a pAVK, a volunteer with sufficient physical activity in accordance with the Freiburg Questionnaire of Physical Activity and two professional athletes. After calibration of the plantarflexion ergometer MR-PEDALO (Figures 2a and 2b) for the execution of auxotonic muscle work a 1- minute alternating foot extension and flexion exercise on MRPEDALO was performed in the MR machine. Instead of the lower leg splint shown in Figures 2a and 2b the MR coil fits exactly in MR-PEDALO used for DCE-MRT. Mechanical work performed during the 1-minute exercise ranged from 52 watt seconds (Ws) to 244 Ws (0.65 W to 4.07 W), indicating similar interindividual work loads in relation to the individual maximum isometric strength. DCE-MRT was performed at rest and immediately after auxotonic exercise test (T1w 2DFLASH- GE sequence with TR/TE/alpha: 100 ms/6 ms/70 degrees; field of view: 400; matrix: 81 x 256; slice thickness: 10 mm; acquisitions: 73 at 8.3 s each; total examination time: 9.24 min; bolus application of Magnevist, Schering, 0.02 ml/kg kg, 20 ml bolus NaCl, flow 2 ml/s, 22G cannula in a cubital vein). Signal intensity (SI) curves were analyzed with DynaVision (MeVis gGmbH, Bremen, Germany).
Measuring peripheral blood flow needs appropriate muscular stress tests. The SI-curves of the region of interest (ROI) representing the peroneus, tibialis anterior and gastrocnemius muscle run almost parallel at rest. Workloads between 52 Ws and 244 Ws (0.65 W and 4.07 W), similar in relation to the individual maximum isometric strength, induce distinctive changes of the upslope, wash-in, peak and washout of SI-curves preferably for the peroneus muscle and less predominant also for the tibialis anterior muscle and gastrocnemius muscle respectively. The first case, a 55-year-old female patient with peripheral arterial occlusive disease (pAVK) stage Fontaine IIb before (Figure 3a) and after (Figure 3b) percutaneous transluminal angioplasty (PTA) of a right femoral artery stenosis shows after interventional treatment a rapid post-exercise SI-increase in the peroneus muscle. The steeper SI-curve indicates a better contrast medium inflow due to an improved perfusion. The second case, a 65-year-old man suffering from coronary heart disease without clinical signs of pAVK (Figure 4) exercised with a workload of 92 Ws. After stress test the ROI for the peroneus muscle shows a clear intensity increase. After exercise the SI-curve for the tibialis anterior muscle shows a similar, but less predominant change while the shape of the SI-curve of the gastrocnemius muscle remains mainly identical. A 23-year-old male person with average physical activity (Figure 5) performed DCE-MRT of the left lower leg after stress test with 172 Ws demonstrating a rapid signal increase in the peroneus muscle while the synergistic tibialis anterior muscle and antagonistic gastrocnemius muscle show a comparatively slow contrast-medium wash-in. A 26-year-old male athlete (Figure 6) exercised with 196 Ws showing a rapid contrast medium inflow in the peroneus muscle and initially also in the synergistic tibialis anterior muscle. A contrast-medium wash-out appears in both muscles, while the shape of the gastrocnemius muscle SI-curve remains substantially unchanged. A 26-year-old female athlete (Figure 7) exercised with 244 Ws. Post exercise SI-curves show a distinctive and rapid increase of contrast medium wash-in with a sharp peak particularly in the peroneus muscle and similarly in the tibialis anterior and gastrocnemius muscle. After exercise all SI-curves show a wash-out phase.
SI-curves show relative increase in correlation with Time-to-Peak (TTP) decrease and Mean-Intensity to Time Ratio (MITR) increase indicating blood flow reserve mobilization after exercise. Individual muscle state seems to be linked to muscle recruitment and muscle coordination reflected by post-exercise SI-curves. The gastrocnemius muscle shows comparatively low SI-curve changes after muscular load test. Further methodological standardization and optimization of the stress test is mandatory to assure intra- and interindividual comparisons. Due to direct visualization and quantitative evaluation of the peripheral microcirculation DCE-MRT has a diagnostic potential for monitoring therapeutic response in peripheral circulation disorders and sports medicine.
本文描述了动态对比增强磁共振断层扫描(DCE-MRT)在可视化和定量分析静息状态及个体化调整肌肉运动后小腿肌肉血流方面的潜力。
选取5例患者以举例说明小腿肌肉血流的定性和半定量评估。通过等长最大力量测量确定小腿肌肉状态,受试者包括一名患有外周动脉闭塞性疾病(pAVK)的女性患者、一名无pAVK临床体征的冠心病(KHK)男性患者、一名根据弗莱堡体力活动问卷有足够体力活动的志愿者以及两名职业运动员。在对足底屈肌测力计MR-PEDALO(图2a和2b)进行校准以执行辅助性肌肉工作后,在磁共振成像仪中于MR-PEDALO上进行1分钟的交替足伸展和屈曲运动。用于DCE-MRT的MR线圈精确适配于MR-PEDALO,而非图2a和2b中所示的小腿夹板。1分钟运动期间所做的机械功范围为52瓦秒(Ws)至244 Ws(0.65 W至4.07 W),表明个体间相对于个体最大等长力量的工作负荷相似。在静息状态和辅助性运动测试后立即进行DCE-MRT(T1w 2DFLASH-GE序列,TR/TE/α:100 ms/6 ms/70°;视野:400;矩阵:81×256;层厚:10 mm;采集次数:每次8.3秒采集73次;总检查时间:9.24分钟;经肘静脉团注施贵宝公司的马根维显,0.02 ml/kg体重,20 ml团注氯化钠,流速2 ml/s,使用22G套管)。使用DynaVision(德国不来梅的MeVis gGmbH公司)分析信号强度(SI)曲线。
测量外周血流需要适当的肌肉应激测试。代表腓骨肌、胫骨前肌和腓肠肌的感兴趣区域(ROI)的SI曲线在静息状态下几乎平行。52 Ws至244 Ws(0.65 W至4.07 W)的工作负荷,相对于个体最大等长力量相似,会引起SI曲线的上升支、流入、峰值和流出的明显变化,腓骨肌变化最为明显,胫骨前肌和腓肠肌变化相对较小。第一个病例,一名55岁患有外周动脉闭塞性疾病(pAVK)Fontaine IIb期的女性患者,在右股动脉狭窄经皮腔内血管成形术(PTA)前(图3a)和后(图3b)进行DCE-MRT,介入治疗后腓骨肌运动后SI迅速增加。更陡峭的SI曲线表明由于灌注改善,造影剂流入更好。第二个病例,一名65岁患有冠心病且无pAVK临床体征的男性(图4),以92 Ws的工作负荷进行运动。应激测试后,腓骨肌的ROI显示强度明显增加。运动后,胫骨前肌的SI曲线显示类似但不太明显的变化,而腓肠肌的SI曲线形状基本保持不变。一名23岁平均体力活动水平的男性(图5),在172 Ws的应激测试后对左小腿进行DCE-MRT,显示腓骨肌信号迅速增加,而协同的胫骨前肌和拮抗的腓肠肌造影剂流入相对较慢。一名26岁男性运动员(图6)以196 Ws的负荷进行运动,显示造影剂迅速流入腓骨肌,最初也流入协同的胫骨前肌。两种肌肉均出现造影剂流出,而腓肠肌的SI曲线形状基本不变。一名26岁女性运动员(图7)以244 Ws的负荷进行运动。运动后SI曲线显示造影剂流入明显且迅速增加,有一个尖锐的峰值,特别是在腓骨肌,胫骨前肌和腓肠肌也类似。运动后所有SI曲线均显示流出阶段。
SI曲线显示相对增加与达峰时间(TTP)降低和平均强度与时间比值(MITR)增加相关,表明运动后血流储备动员。个体肌肉状态似乎与运动后SI曲线所反映的肌肉募集和肌肉协调有关。腓肠肌在肌肉负荷测试后SI曲线变化相对较小。必须进一步进行方法学标准化和优化应激测试,以确保个体内和个体间的比较。由于DCE-MRT能够直接可视化和定量评估外周微循环,因此在监测外周循环障碍和运动医学中的治疗反应方面具有诊断潜力。