Suppr超能文献

日本慢生根瘤菌中一种显性负性的fur突变

A dominant-negative fur mutation in Bradyrhizobium japonicum.

作者信息

Benson Heather P, LeVier Kristin, Guerinot Mary Lou

机构信息

Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA.

出版信息

J Bacteriol. 2004 Mar;186(5):1409-14. doi: 10.1128/JB.186.5.1409-1414.2004.

Abstract

In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. Manganese interacts with the Fur protein and represses iron uptake genes. In the presence of high levels of manganese, bacteria with a wild-type copy of the fur gene repress iron uptake systems and starve for iron, whereas fur mutants fail to repress iron uptake systems and survive. The B. japonicum fur mutant, as expected, fails to repress iron-regulated outer membrane proteins in the presence of iron. Unexpectedly, a wild-type copy of the fur gene cannot complement the fur mutant. Expression of the fur mutant allele in wild-type cells leads to a fur phenotype. Unlike a B. japonicum fur-null mutant, the strain carrying the dominant-negative fur mutation is unable to form functional, nitrogen-fixing nodules on soybean, mung bean, or cowpea, suggesting a role for a Fur-regulated protein or proteins in the symbiosis.

摘要

在许多细菌中,铁摄取调节蛋白(Fur)在铁摄取基因的调控中起着核心作用。由于铁在大豆与其固氮内共生菌日本慢生根瘤菌之间具有重要农业意义的共生关系中占据显著地位,我们想要评估Fur在这种相互作用中的作用。我们通过筛选对锰具有抗性的菌株鉴定出了一个fur突变体。锰与Fur蛋白相互作用并抑制铁摄取基因。在高水平锰存在的情况下,具有fur基因野生型拷贝的细菌会抑制铁摄取系统并因缺铁而饥饿,而fur突变体则无法抑制铁摄取系统并存活下来。正如预期的那样,日本慢生根瘤菌fur突变体在铁存在的情况下无法抑制铁调节的外膜蛋白。出乎意料的是,fur基因的野生型拷贝无法互补fur突变体。在野生型细胞中表达fur突变体等位基因会导致出现fur表型。与日本慢生根瘤菌fur基因缺失突变体不同,携带显性负性fur突变的菌株无法在大豆、绿豆或豇豆上形成功能性的固氮根瘤,这表明一种或多种Fur调节蛋白在共生关系中发挥作用。

相似文献

1
A dominant-negative fur mutation in Bradyrhizobium japonicum.
J Bacteriol. 2004 Mar;186(5):1409-14. doi: 10.1128/JB.186.5.1409-1414.2004.
2
Identification of a functional fur gene in Bradyrhizobium japonicum.
J Bacteriol. 1999 Sep;181(18):5843-6. doi: 10.1128/JB.181.18.5843-5846.1999.
3
Discovery of a haem uptake system in the soil bacterium Bradyrhizobium japonicum.
Mol Microbiol. 2001 Aug;41(4):787-800. doi: 10.1046/j.1365-2958.2001.02555.x.
4
The mntH gene encodes the major Mn(2+) transporter in Bradyrhizobium japonicum and is regulated by manganese via the Fur protein.
Mol Microbiol. 2009 Apr;72(2):399-409. doi: 10.1111/j.1365-2958.2009.06650.x. Epub 2009 Mar 4.
5
An iron uptake operon required for proper nodule development in the Bradyrhizobium japonicum-soybean symbiosis.
Mol Plant Microbe Interact. 2005 Sep;18(9):950-9. doi: 10.1094/MPMI-18-0950.
6
Host-specific symbiotic requirement of BdeAB, a RegR-controlled RND-type efflux system in Bradyrhizobium japonicum.
FEMS Microbiol Lett. 2010 Nov;312(2):184-91. doi: 10.1111/j.1574-6968.2010.02115.x. Epub 2010 Sep 30.
7
Transcriptional control of the Bradyrhizobium japonicum irr gene requires repression by fur and Antirepression by Irr.
J Biol Chem. 2010 Aug 20;285(34):26074-80. doi: 10.1074/jbc.M110.145979. Epub 2010 Jun 23.
9
An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by (syn. Bradyrhizobium japonicum) USDA110.
Appl Environ Microbiol. 2019 Nov 27;85(24). doi: 10.1128/AEM.01552-19. Print 2019 Dec 15.
10
Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.
J Bacteriol. 2009 Mar;191(5):1361-8. doi: 10.1128/JB.01571-08. Epub 2008 Dec 29.

引用本文的文献

1
Metal homeostasis and resistance in bacteria.
Nat Rev Microbiol. 2017 Jun;15(6):338-350. doi: 10.1038/nrmicro.2017.15. Epub 2017 Mar 27.
2
Engineering rhizobial bioinoculants: a strategy to improve iron nutrition.
ScientificWorldJournal. 2013 Nov 6;2013:315890. doi: 10.1155/2013/315890.
3
Interplay between iron homeostasis and the osmotic stress response in the halophilic bacterium Chromohalobacter salexigens.
Appl Environ Microbiol. 2010 Jun;76(11):3575-89. doi: 10.1128/AEM.03136-09. Epub 2010 Apr 2.
4
Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.
J Bacteriol. 2009 Mar;191(5):1361-8. doi: 10.1128/JB.01571-08. Epub 2008 Dec 29.
5
The Bradyrhizobium japonicum Fur protein is an iron-responsive regulator in vivo.
Mol Genet Genomics. 2006 Dec;276(6):555-64. doi: 10.1007/s00438-006-0162-4. Epub 2006 Oct 13.
6
Iron-dependent cytochrome c1 expression is mediated by the status of heme in Bradyrhizobium japonicum.
J Bacteriol. 2005 Aug;187(15):5084-9. doi: 10.1128/JB.187.15.5084-5089.2005.

本文引用的文献

2
Genetic Diversity in Bradyrhizobium japonicum Serogroup 123 and Its Relation to Genotype-Specific Nodulation of Soybean.
Appl Environ Microbiol. 1987 Nov;53(11):2624-30. doi: 10.1128/aem.53.11.2624-2630.1987.
3
Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis.
J Biol Chem. 2003 Aug 8;278(32):29478-86. doi: 10.1074/jbc.M303381200. Epub 2003 May 13.
4
Fur is not the global regulator of iron uptake genes in Rhizobium leguminosarum.
Microbiology (Reading). 2003 May;149(Pt 5):1357-1365. doi: 10.1099/mic.0.26130-0.
7
Acquisition of siderophores in gram-negative bacteria.
Nat Rev Mol Cell Biol. 2003 Feb;4(2):105-16. doi: 10.1038/nrm1015.
8
RirA, an iron-responsive regulator in the symbiotic bacterium Rhizobium leguminosarum.
Microbiology (Reading). 2002 Dec;148(Pt 12):4059-4071. doi: 10.1099/00221287-148-12-4059.
9
Manganese: elemental defence for a life with oxygen.
Trends Microbiol. 2002 Nov;10(11):496-501. doi: 10.1016/s0966-842x(02)02462-9.
10
Global analysis of the Bacillus subtilis Fur regulon and the iron starvation stimulon.
Mol Microbiol. 2002 Sep;45(6):1613-29. doi: 10.1046/j.1365-2958.2002.03113.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验