Suppr超能文献

基于空间重叠指数的图像分割质量的统计验证。

Statistical validation of image segmentation quality based on a spatial overlap index.

作者信息

Zou Kelly H, Warfield Simon K, Bharatha Aditya, Tempany Clare M C, Kaus Michael R, Haker Steven J, Wells William M, Jolesz Ferenc A, Kikinis Ron

机构信息

Department of Radiology and Surgical Planning Laboratory, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St (Floor L-l), Boston, MA 02115, USA.

出版信息

Acad Radiol. 2004 Feb;11(2):178-89. doi: 10.1016/s1076-6332(03)00671-8.

Abstract

RATIONALE AND OBJECTIVES

To examine a statistical validation method based on the spatial overlap between two sets of segmentations of the same anatomy.

MATERIALS AND METHODS

The Dice similarity coefficient (DSC) was used as a statistical validation metric to evaluate the performance of both the reproducibility of manual segmentations and the spatial overlap accuracy of automated probabilistic fractional segmentation of MR images, illustrated on two clinical examples. Example 1: 10 consecutive cases of prostate brachytherapy patients underwent both preoperative 1.5T and intraoperative 0.5T MR imaging. For each case, 5 repeated manual segmentations of the prostate peripheral zone were performed separately on preoperative and on intraoperative images. Example 2: A semi-automated probabilistic fractional segmentation algorithm was applied to MR imaging of 9 cases with 3 types of brain tumors. DSC values were computed and logit-transformed values were compared in the mean with the analysis of variance (ANOVA).

RESULTS

Example 1: The mean DSCs of 0.883 (range, 0.876-0.893) with 1.5T preoperative MRI and 0.838 (range, 0.819-0.852) with 0.5T intraoperative MRI (P < .001) were within and at the margin of the range of good reproducibility, respectively. Example 2: Wide ranges of DSC were observed in brain tumor segmentations: Meningiomas (0.519-0.893), astrocytomas (0.487-0.972), and other mixed gliomas (0.490-0.899).

CONCLUSION

The DSC value is a simple and useful summary measure of spatial overlap, which can be applied to studies of reproducibility and accuracy in image segmentation. We observed generally satisfactory but variable validation results in two clinical applications. This metric may be adapted for similar validation tasks.

摘要

原理与目的

检验一种基于同一解剖结构的两组分割之间空间重叠的统计验证方法。

材料与方法

使用骰子相似系数(DSC)作为统计验证指标,以评估手动分割的可重复性以及MR图像自动概率分数分割的空间重叠准确性,通过两个临床实例进行说明。实例1:10例连续的前列腺近距离治疗患者术前接受1.5T MR成像,术中接受0.5T MR成像。对于每例患者,分别在术前和术中图像上对前列腺外周区进行5次重复的手动分割。实例2:将一种半自动概率分数分割算法应用于9例患有3种脑肿瘤类型患者的MR成像。计算DSC值,并将对数转换后的值进行均值比较,采用方差分析(ANOVA)。

结果

实例1:1.5T术前MRI的平均DSC为0.883(范围0.876 - 0.893),0.5T术中MRI的平均DSC为0.838(范围0.819 - 0.852)(P <.001),分别处于良好可重复性范围内和边缘。实例2:在脑肿瘤分割中观察到DSC的范围较广:脑膜瘤(0.519 - 0.893)、星形细胞瘤(0.487 - 0.972)和其他混合胶质瘤(0.490 - 0.899)。

结论

DSC值是空间重叠的一种简单且有用的汇总度量,可应用于图像分割的可重复性和准确性研究。在两个临床应用中,我们观察到验证结果总体上令人满意但存在差异。该指标可能适用于类似的验证任务。

相似文献

1
Statistical validation of image segmentation quality based on a spatial overlap index.
Acad Radiol. 2004 Feb;11(2):178-89. doi: 10.1016/s1076-6332(03)00671-8.
4
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.
Neuroimage. 2014 Nov 1;101:494-512. doi: 10.1016/j.neuroimage.2014.04.054. Epub 2014 Apr 29.
6
Automated tumor volumetry using computer-aided image segmentation.
Acad Radiol. 2015 May;22(5):653-661. doi: 10.1016/j.acra.2015.01.005. Epub 2015 Mar 12.
8
Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging.
J Digit Imaging. 2017 Dec;30(6):782-795. doi: 10.1007/s10278-017-9964-7.
10

引用本文的文献

4
On the Utility of Virtual Staining for Downstream Applications as it relates to Task Network Capacity.
bioRxiv. 2025 Aug 6:2025.08.04.668552. doi: 10.1101/2025.08.04.668552.
6
Region-informed machine learning model for choroid plexus segmentation in Alzheimer's disease.
Front Aging Neurosci. 2025 Jul 23;17:1613320. doi: 10.3389/fnagi.2025.1613320. eCollection 2025.
8
Anterior insular cortex glutamate-glutamine (Glx) levels predict general psychopathology via heightened error sensitivity.
Front Neurosci. 2025 Jul 16;19:1592015. doi: 10.3389/fnins.2025.1592015. eCollection 2025.
9
Pediatric BurnNet: Robust multi-class segmentation and severity recognition under real-world imaging conditions.
SAGE Open Med. 2025 Jul 24;13:20503121251360090. doi: 10.1177/20503121251360090. eCollection 2025.
10
AI-Assisted Image Recognition of Cervical Spine Vertebrae in Dynamic X-Ray Recordings.
Bioengineering (Basel). 2025 Jun 20;12(7):679. doi: 10.3390/bioengineering12070679.

本文引用的文献

1
Partial volume tissue classification of multichannel magnetic resonance images-a mixel model.
IEEE Trans Med Imaging. 1991;10(3):395-407. doi: 10.1109/42.97590.
2
Morphometric analysis of white matter lesions in MR images: method and validation.
IEEE Trans Med Imaging. 1994;13(4):716-24. doi: 10.1109/42.363096.
3
7
Automated segmentation of MR images of brain tumors.
Radiology. 2001 Feb;218(2):586-91. doi: 10.1148/radiology.218.2.r01fe44586.
9
MRI simulation-based evaluation of image-processing and classification methods.
IEEE Trans Med Imaging. 1999 Nov;18(11):1085-97. doi: 10.1109/42.816072.
10
Quantitative follow-up of patients with multiple sclerosis using MRI: technical aspects.
J Magn Reson Imaging. 1999 Apr;9(4):519-30. doi: 10.1002/(sici)1522-2586(199904)9:4<519::aid-jmri3>3.0.co;2-m.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验