Martin Lisa J, North Kari E, Dyer Tom, Blangero John, Comuzzie Anthony G, Williams Jeff
Center for Epidemiology and Biostatistics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA.
BMC Genet. 2003 Dec 31;4 Suppl 1(Suppl 1):S95. doi: 10.1186/1471-2156-4-S1-S95.
Insulin resistance, obesity, dyslipidemia, and high blood pressure characterize the metabolic syndrome. In an effort to explore the utility of different multivariate methods of data reduction to better understand the genetic influences on the aggregation of metabolic syndrome phenotypes, we calculated phenotypic, genetic, and genome-wide LOD score correlation matrices using five traits (total cholesterol, high density lipoprotein cholesterol, triglycerides, systolic blood pressure, and body mass index) from the Framingham Heart Study data set prepared for the Genetic Analysis Workshop 13, clinic visits 10 and 1 for the original and offspring cohorts, respectively. We next applied factor analysis to summarize the relationship between these phenotypes.
Factors generated from the genetic correlation matrix explained the most variation. Factors extracted using the other matrices followed a different pattern and suggest distinct effects.
Given these results, different methods of multivariate data reduction may provide unique clues on the clustering of this complex syndrome.
胰岛素抵抗、肥胖、血脂异常和高血压是代谢综合征的特征。为了探索不同多元数据降维方法在更好理解代谢综合征表型聚集的遗传影响方面的效用,我们使用了来自为遗传分析研讨会13准备的弗雷明汉心脏研究数据集的五个性状(总胆固醇、高密度脂蛋白胆固醇、甘油三酯、收缩压和体重指数)计算了表型、遗传和全基因组LOD得分相关矩阵,分别针对原始队列和后代队列的第10次和第1次临床访视。接下来,我们应用因子分析来总结这些表型之间的关系。
从遗传相关矩阵生成的因子解释了最大的变异。使用其他矩阵提取的因子遵循不同的模式,并表明有不同的影响。
鉴于这些结果,不同的多元数据降维方法可能为这种复杂综合征的聚类提供独特线索。