Alexa Anita, Bozóky Zoltán, Farkas Attila, Tompa Peter, Friedrich Peter
Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, P. O. Box 7, H-1518 Budapest, Hungary.
J Biol Chem. 2004 May 7;279(19):20118-26. doi: 10.1074/jbc.M311969200. Epub 2004 Feb 19.
The effect of Ca2+ in calpain activation is mediated via several binding sites in the enzyme molecule. To test the contribution of structural elements suspected to be part of this Ca2+ relay system, we made a site-directed mutagenesis study on calpains, measuring consequential changes in Ca2+ binding and Ca2+ sensitivity of enzyme activity. Evidence is provided for earlier suggestions that an acidic loop in domain III and the transducer region connecting domains III and IV are part of the Ca2+ relay system. Wild-type Drosophila Calpain B domain III binds two to three Ca2+ ions with a K(d) of 3400 microm. Phospholipids lower this value to 220 microm. Ca2+ binding decreases in parallel with the number of mutated loop residues. Deletion of the entire loop abolishes binding of the ion. The Ca2+ dependence of enzyme activity of various acidic-loop mutants of Calpain B and rat m-calpain suggests the importance of the loop in regulating activity. Most conspicuously, the replacement of two adjacent acidic residues in the N-terminal half of the loop evokes a dramatic decrease in the Ca2+ need of both enzymes, lowering half-maximal Ca2+ concentration from 8.6 to 1.3 mm for Calpain B and from 250 to 7 microm for m-calpain. Transducer-region mutations in m-calpain also facilitate Ca2+ activation with the most profound effect seen upon shortening the region by deletion mutagenesis. All of these data along with structural considerations suggest that the acidic loop and the transducer region form an interconnected, extended structural unit that has the capacity to integrate and transduce Ca2+-evoked conformational changes over a long distance. A schematic model of this "extended transducer" mechanism is presented.
钙蛋白酶激活过程中Ca2+的作用是通过酶分子中的几个结合位点介导的。为了测试疑似该Ca2+传递系统一部分的结构元件的作用,我们对钙蛋白酶进行了定点诱变研究,测量了Ca2+结合和酶活性Ca2+敏感性的相应变化。研究结果为之前的推测提供了证据,即结构域III中的酸性环以及连接结构域III和IV的转导区域是Ca2+传递系统的一部分。野生型果蝇钙蛋白酶B的结构域III结合两到三个Ca2+离子,解离常数K(d)为3400微摩尔。磷脂可将该值降至220微摩尔。Ca2+结合量随环残基突变数量的增加而平行减少。删除整个环会消除离子的结合。钙蛋白酶B和大鼠m-钙蛋白酶各种酸性环突变体的酶活性对Ca2+的依赖性表明该环在调节活性方面的重要性。最显著的是,环N端一半中两个相邻酸性残基的替换导致两种酶对Ca2+的需求急剧下降,钙蛋白酶B的半数最大Ca2+浓度从8.6毫摩尔降至1.3毫摩尔,m-钙蛋白酶从250微摩尔降至7微摩尔。m-钙蛋白酶中转导区域的突变也促进了Ca2+的激活,通过缺失诱变缩短该区域时效果最为显著。所有这些数据以及结构方面的考虑表明,酸性环和转导区域形成了一个相互连接的、延伸的结构单元,该单元有能力在远距离整合和转导Ca2+引发的构象变化。本文提出了这种“延伸转导器”机制的示意图模型。