Weiss Emily A, Chernick Erin T, Wasielewski Michael R
Department of Chemistry and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois 60208-3113, USA.
J Am Chem Soc. 2004 Mar 3;126(8):2326-7. doi: 10.1021/ja039395n.
It is well known that the molecular structure of an electron donor-acceptor system can be changed to optimize the electronic coupling between photogenerated radical ion pairs (PRPs), resulting in favorable charge separation (CS) and charge recombination (CR) rates. It would be far more convenient to avoid extensive synthetic modifications to the structure to achieve the same ends by perturbing the electronic properties of the PRP. We present here results on PRPs within rodlike donor-acceptor molecules having a covalently attached stable 2,2,6,6-tetramethylpiperidinoxyl radical (T*). The distances and orientations between all three radicals are highly restricted by the intervening molecular structure, making it possible to directly measure both the CR dynamics and the spin-spin exchange interaction, 2JPRP, between the radicals within the PRPs. The molecular triads studied are MeOAn-6ANI-PI-T* and MeOAn-6ANI-NI-T*, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, NI = naphthalene-1,8:4,5-bis(dicarboximide), and PI = pyromellitimide. These molecules have been characterized using femtosecond and nanosecond transient absorption spectroscopy as well as measurements of 2JPRP using magnetic field effects on the triplet state yield resulting from CR. We find that T* enhances radical pair intersystem crossing (EISC), resulting in an increase or decrease in the PRP lifetime depending on the relative ordering of the energy levels of the PRP and the local neutral triplet states. This is especially pronounced when the PRP is nearly isoenergetic with the neutral triplet state, as is the case for MeOAn-6ANI-NI-T*. The dependence of the 3NI and 36ANI yield on an applied external magnetic field shows a distinct resonance at 2JPRP, the magnitude of which is not perturbed by the presence of the third spin. The sensitivity of this system to changes in spin state may offer ways to externally control the radical ion pair dynamics using pulsed microwaves.
众所周知,电子供体 - 受体系统的分子结构可以改变,以优化光生自由基离子对(PRP)之间的电子耦合,从而产生有利的电荷分离(CS)和电荷复合(CR)速率。通过扰动PRP的电子性质来避免对结构进行广泛的合成修饰以达到相同目的会更加方便。我们在此展示了具有共价连接的稳定2,2,6,6 - 四甲基哌啶氧基自由基(T*)的棒状供体 - 受体分子内PRP的相关结果。所有三个自由基之间的距离和取向受到中间分子结构的高度限制,这使得直接测量CR动力学以及PRP内自由基之间的自旋 - 自旋交换相互作用2JPRP成为可能。所研究的分子三元组是MeOAn - 6ANI - PI - T和MeOAn - 6ANI - NI - T,其中MeOAn = 对甲氧基苯胺,6ANI = 4 - (N - 哌啶基)萘 - 1,8 - 二甲酰亚胺,NI = 萘 - 1,8:4,5 - 双(二甲酰亚胺),PI = 均苯四甲酸二酰亚胺。这些分子已通过飞秒和纳秒瞬态吸收光谱以及利用磁场对CR产生的三重态产率的影响来测量2JPRP进行了表征。我们发现T增强了自由基对系间窜越(EISC),这导致PRP寿命根据PRP和局部中性三重态能级的相对顺序增加或减少。当PRP与中性三重态几乎等能时,这种情况尤为明显,就像MeOAn - 6ANI - NI - T的情况一样。3NI和36ANI产率对施加的外部磁场的依赖性在2JPRP处显示出明显的共振,其大小不受第三个自旋存在的干扰。该系统对自旋状态变化的敏感性可能提供了使用脉冲微波从外部控制自由基离子对动力学的方法。