Suppr超能文献

14型人鼻病毒脱壳相关结构变化的冷冻电子显微镜分析。

Cryoelectron microscopy analysis of the structural changes associated with human rhinovirus type 14 uncoating.

作者信息

Hewat Elizabeth A, Blaas Dieter

机构信息

Institut de Biologie Structurale Jean-Pierre Ebel, 38027 Grenoble, France.

出版信息

J Virol. 2004 Mar;78(6):2935-42. doi: 10.1128/jvi.78.6.2935-2942.2004.

Abstract

Release of the human rhinovirus (HRV) genome into the cytoplasm of the cell involves a concerted structural modification of the viral capsid. The intracellular adhesion molecule 1 (ICAM-1) cellular receptor of the major-group HRVs and the low-density lipoprotein (LDL) receptor of the minor-group HRVs have different nonoverlapping binding sites. While ICAM-1 binding catalyzes uncoating, LDL receptor binding does not. Uncoating of minor-group HRVs is initiated by the low pH of late endosomes. We have studied the conformational changes concomitant with uncoating in the major-group HRV14 and compared them with previous results for the minor-group HRV2. The structure of empty HRV14 was determined by cryoelectron microscopy, and the atomic structure of native HRV14 was used to examine the conformational changes of the capsid and its constituent viral proteins. For both HRV2 and HRV14, the transformation from full to empty capsid involves an overall 4% expansion and an iris type of movement of viral protein VP1 to open up a 10-A-diameter channel on the fivefold axis to allow exit of the RNA genome. The beta-cylinders formed by the N termini of the VP3 molecules inside the capsid on the fivefold axis all open up in HRV2, but we propose that only one opens up in HRV14. The release of VP4 is less efficient in HRV14 than in HRV2, and the N termini of VP1 may exit at different points. The N-terminal loop of VP2 is modified in both viruses, probably to detach the RNA, but it bends only inwards in HRV2.

摘要

人鼻病毒(HRV)基因组释放到细胞胞质中涉及病毒衣壳的协同结构修饰。主要组HRV的细胞间黏附分子1(ICAM-1)细胞受体和次要组HRV的低密度脂蛋白(LDL)受体具有不同的非重叠结合位点。虽然ICAM-1结合催化脱壳,但LDL受体结合则不然。次要组HRV的脱壳由晚期内体的低pH引发。我们研究了主要组HRV14脱壳过程中伴随的构象变化,并将其与次要组HRV2的先前结果进行了比较。通过冷冻电子显微镜确定了空HRV14的结构,并使用天然HRV14的原子结构来检查衣壳及其组成病毒蛋白的构象变化。对于HRV2和HRV14,从完整衣壳到空衣壳的转变都涉及整体4%的膨胀以及病毒蛋白VP1的虹膜样运动,以在五重轴上打开一个直径为10埃的通道,从而允许RNA基因组的释放。衣壳内五重轴上由VP3分子的N端形成的β圆柱体在HRV2中全部打开,但我们认为在HRV14中只有一个打开。HRV14中VP4的释放效率低于HRV2,并且VP1的N端可能在不同点退出。VP2的N端环在两种病毒中都有修饰,可能是为了分离RNA,但它仅在HRV2中向内弯曲。

相似文献

2
The concerted conformational changes during human rhinovirus 2 uncoating.
Mol Cell. 2002 Aug;10(2):317-26. doi: 10.1016/s1097-2765(02)00603-2.
3
The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle.
Structure. 1997 Mar 15;5(3):427-41. doi: 10.1016/s0969-2126(97)00199-8.
5
ICAM-1 induced rearrangements of capsid and genome prime rhinovirus 14 for activation and uncoating.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2024251118.
6
Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid.
PLoS Pathog. 2012 Jan;8(1):e1002473. doi: 10.1371/journal.ppat.1002473. Epub 2012 Jan 5.
8
Trypsin sensitivity of several human rhinovirus serotypes in their low pH-induced conformation.
Virology. 1989 Aug;171(2):611-4. doi: 10.1016/0042-6822(89)90632-6.
9
Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion.
J Virol. 1993 Jan;67(1):390-7. doi: 10.1128/JVI.67.1.390-397.1993.

引用本文的文献

1
DMSO might impact ligand binding, capsid stability, and RNA interaction in viral preparations.
Sci Rep. 2024 Dec 6;14(1):30408. doi: 10.1038/s41598-024-81789-x.
4
A coarse-grained model of the expansion of the human rhinovirus 2 capsid reveals insights in genome release.
J R Soc Interface. 2019 Aug 30;16(157):20190044. doi: 10.1098/rsif.2019.0044. Epub 2019 Aug 14.
5
Enterovirus particles expel capsid pentamers to enable genome release.
Nat Commun. 2019 Mar 8;10(1):1138. doi: 10.1038/s41467-019-09132-x.
6
Antiviral Agents From Fungi: Diversity, Mechanisms and Potential Applications.
Front Microbiol. 2018 Oct 2;9:2325. doi: 10.3389/fmicb.2018.02325. eCollection 2018.
7
Antibody-induced uncoating of human rhinovirus B14.
Proc Natl Acad Sci U S A. 2017 Jul 25;114(30):8017-8022. doi: 10.1073/pnas.1707369114. Epub 2017 Jul 10.
8
Structure of Aichi Virus 1 and Its Empty Particle: Clues to Kobuvirus Genome Release Mechanism.
J Virol. 2016 Nov 14;90(23):10800-10810. doi: 10.1128/JVI.01601-16. Print 2016 Dec 1.
10
Receptors for enterovirus 71.
Emerg Microbes Infect. 2014 Jul;3(7):e53. doi: 10.1038/emi.2014.49. Epub 2014 Jul 16.

本文引用的文献

3
The concerted conformational changes during human rhinovirus 2 uncoating.
Mol Cell. 2002 Aug;10(2):317-26. doi: 10.1016/s1097-2765(02)00603-2.
5
Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor.
Nat Struct Biol. 2001 Oct;8(10):874-8. doi: 10.1038/nsb1001-874.
7
Fitting atomic models into electron-microscopy maps.
Acta Crystallogr D Biol Crystallogr. 2000 Oct;56(Pt 10):1341-9. doi: 10.1107/s0907444900009562.
8
Distinct cellular receptor interactions in poliovirus and rhinoviruses.
EMBO J. 2000 Mar 15;19(6):1207-16. doi: 10.1093/emboj/19.6.1207.
9
Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus.
J Virol. 2000 Feb;74(3):1342-54. doi: 10.1128/jvi.74.3.1342-1354.2000.
10
Interaction of the poliovirus receptor with poliovirus.
Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):79-84. doi: 10.1073/pnas.97.1.79.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验