Lischke V, Kessler P, Byhahn C, Westphal K, Amann A
Anästhesie-Abteilung und operative Intensivmedizin, Hochtaunus-Kliniken gGmbH, Bad Homburg.
Anaesthesist. 2004 Feb;53(2):125-36. doi: 10.1007/s00101-003-0635-3.
As one major link in the chain of survival, early transthoracic (external) cardiac defibrillation is aimed at the termination of ventricular flutter and ventricular fibrillation. Most important to the success of defibrillation is the passage of a defined amount of current through a critical mass of heart muscle. Different transthoracic resistances reduce the effective density of the current within the heart. As for other therapeutic intervention procedures, recommendations for the optimal strength of current to be applied to the fibrillating heart need to be evaluated and defined for therapeutical defibrillation too. Unnecessarily high current density causes damage to the heart and should be prevented. By using biphasic waveforms in contrast to monophasic impulses, the amount of current can be reduced but the same or even higher efficacy is attained. Therefore possible myocardial damage might be clearly reduced. Even with individually altered thoracic impedance effective conversion of cardiac rhythm can be achieved by device-controlled compensation and biphasic waveforms. According to their different mechanisms or origin (electrically induced or spontaneously caused by organic heart disease) the probability of successful conversion of the cardiac rhythm by one single electrical impulse varies. The optimum point in time for defibrillation during resuscitation needs to be redefined. In order to improve comparability, further studies should use standardized definitions for successful defibrillation relating to the resulting cardiac rhythm.