Haynes Anthony, Maitlis Peter M, Morris George E, Sunley Glenn J, Adams Harry, Badger Peter W, Bowers Craig M, Cook David B, Elliott Paul I P, Ghaffar Talit, Green Helena, Griffin Tim R, Payne Marc, Pearson Jean M, Taylor Michael J, Vickers Paul W, Watt Rob J
Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK.
J Am Chem Soc. 2004 Mar 10;126(9):2847-61. doi: 10.1021/ja039464y.
The iridium/iodide-catalyzed carbonylation of methanol to acetic acid is promoted by carbonyl complexes of W, Re, Ru, and Os and simple iodides of Zn, Cd, Hg, Ga, and In. Iodide salts (LiI and Bu(4)NI) are catalyst poisons. In situ IR spectroscopy shows that the catalyst resting state (at H(2)O levels > or = 5% w/w) is fac,cis-Ir(CO)(2)I(3)Me, 2. The stoichiometric carbonylation of 2 into Ir(CO)(2)I(3)(COMe), 6, is accelerated by substoichiometric amounts of neutral promoter species (e.g., Ru(CO)(3)I(2), Ru(CO)(2)I(2), InI(3), GaI(3), and ZnI(2)). The rate increase is approximately proportional to promoter concentration for promoter:Ir ratios of 0-0.2. By contrast anionic Ru complexes (e.g., Ru(CO)(3)I(3), Ru(CO)(2)I(4)(-)) do not promote carbonylation of 2 and Bu(4)NI is an inhibitor. Mechanistic studies indicate that the promoters accelerate carbonylation of 2 by abstracting an iodide ligand from the Ir center, allowing coordination of CO to give [Ir(CO)(3)I(2)Me], 4, identified by high-pressure IR and NMR spectroscopy. Migratory CO insertion is ca. 700 times faster for 4 than for 2 (85 degrees C, PhCl), representing a lowering of Delta G(++) by 20 kJ mol(-1). Ab initio calculations support a more facile methyl migration in 4, the principal factor being decreased pi-back-donation to the carbonyl ligands compared to 2. The fac,cis isomer of Ir(CO)(2)I(3)(COMe), 6a (as its Ph(4)As(+) salt), was characterized by X-ray crystallography. A catalytic mechanism is proposed in which the promoter [M(CO)(m)I(n)] (M = Ru, In; m = 3, 0; n = 2, 3) binds I(-) to form M(CO)(m)I(n+1)H(3)O(+) and catalyzes the reaction HI(aq) + MeOAc --> MeI + HOAc. This moderates the concentration of HI(aq) and so facilitates catalytic turnover via neutral 4.
铱/碘化物催化甲醇羰基化生成乙酸的反应,可由钨、铼、钌和锇的羰基配合物以及锌、镉、汞、镓和铟的简单碘化物促进。碘化物盐(碘化锂和四丁基碘化铵)是催化剂毒物。原位红外光谱表明,催化剂的静止状态(在水含量≥5% w/w时)为面式、顺式-[Ir(CO)₂I₃Me]⁻,即2。2与化学计量的[Ir(CO)₂I₃(COMe)]⁻(即6)的化学计量羰基化反应,可被亚化学计量的中性促进剂物种(如[Ru(CO)₃I₂]²⁻、[Ru(CO)₂I₂]ₙ、碘化铟、碘化镓和碘化锌)加速。对于促进剂与铱的比例为0 - 0.2时,反应速率的增加大致与促进剂浓度成正比。相比之下,阴离子型钌配合物(如[Ru(CO)₃I₃]⁻、[Ru(CO)₂I₄]²⁻)不会促进2的羰基化反应,且四丁基碘化铵是一种抑制剂。机理研究表明,促进剂通过从铱中心夺取一个碘配体来加速2的羰基化反应,使一氧化碳得以配位生成[Ir(CO)₃I₂Me](即4),这已通过高压红外光谱和核磁共振光谱得到证实。在85℃的氯苯中,4的迁移一氧化碳插入反应速率比2快约700倍,这意味着反应的活化自由能降低了20 kJ·mol⁻¹。从头算计算支持4中甲基迁移更容易,主要因素是与2相比,向羰基配体的π-反馈作用减弱。[Ir(CO)₂I₃(COMe)]⁻(即6a,以其四苯基砷盐形式)的面式、顺式异构体已通过X射线晶体学表征。提出了一种催化机理,其中促进剂[M(CO)ₘIₙ](M = Ru、In;m = 3、0;n = 2、3)与I⁻结合形成[M(CO)ₘIₙ₊₁]⁻H₃O⁺,并催化反应HI(aq) + 乙酸甲酯→碘甲烷 + 乙酸。这降低了HI(aq)的浓度,从而通过中性的4促进催化周转。