Suppr超能文献

二维临界和三临界Potts模型的几何性质。

Geometric properties of two-dimensional critical and tricritical Potts models.

作者信息

Deng Youjin, Blöte Henk W J, Nienhuis Benard

机构信息

Faculty of Applied Sciences, Delft University of Technology, P.O. Box 5046, 2600 GA Delft, The Netherlands.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026123. doi: 10.1103/PhysRevE.69.026123. Epub 2004 Feb 27.

Abstract

We investigate geometric properties of the general q-state Potts model in two dimensions, and define geometric clusters as sets of lattice sites in the same Potts state, connected by nearest-neighbor bonds with variable probability p. We find that, besides the random-cluster fixed point, both the critical and the tricritical Potts models have another fixed point in the p direction. For the critical model, the random-cluster fixed point p(r) is unstable and the other point p(g) > or =p(r) is stable; while p(r) is stable and p(g) < or =p(r) is unstable at tricriticality. Moreover, we show that the fixed point p(g) of a critical and tricritical q-state Potts models can be regarded to correspond to p(r) of a tricritical and critical q'-state Potts models, respectively. In terms of the coupling constant of the Coulomb gas g, these two models are related as gg'=16. By means of Monte Carlo simulations, we obtain p(g)=0.6227(2) and 0.6395(2) for the tricritical Blume-Capel and the q=3 Potts model, respectively, and confirm the predicted values of the magnetic and bond-dilution exponents near p(g).

摘要

我们研究二维一般q态Potts模型的几何性质,并将几何簇定义为处于相同Potts态的格点集,它们通过具有可变概率p的最近邻键相连。我们发现,除了随机簇不动点外,临界和三临界Potts模型在p方向上还有另一个不动点。对于临界模型,随机簇不动点p(r)是不稳定的,而另一个点p(g)≥p(r)是稳定的;而在三临界时,p(r)是稳定的,p(g)≤p(r)是不稳定的。此外,我们表明临界和三临界q态Potts模型的不动点p(g)可分别被视为对应于三临界和临界q'态Potts模型的p(r)。就库仑气体的耦合常数g而言,这两个模型的关系为gg' = 16。通过蒙特卡罗模拟,我们分别得到三临界Blume - Capel模型和q = 3 Potts模型的p(g) = 0.6227(2)和0.6395(2),并证实了在p(g)附近磁和键稀释指数的预测值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验