Suppr超能文献

巴克豪森噪声中的维度交叉和通用粗糙度分布

Dimensional crossover and universal roughness distributions in Barkhausen noise.

作者信息

de Queiroz S L A

机构信息

Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026126. doi: 10.1103/PhysRevE.69.026126. Epub 2004 Feb 27.

Abstract

We investigate the dimensional crossover of scaling properties of avalanches (domain-wall jumps) in a single-interface model, used for the description of Barkhausen noise in disordered magnets. By varying the transverse aspect ratio A=L(y)/L(x) of simulated samples, the system dimensionality changes from two to three. We find that perturbing away from d=2 is a relevant field. The exponent tau characterizing the power-law scaling of avalanche distributions varies between 1.06(1) for d=2 and 1.275(15) for d=3, according to a crossover function f(x), x identical with (L-1x)(phi)/A, with phi=0.95(3). We discuss the possible relevance of our results to the interpretation of thin-film measurements of Barkhausen noise. We also study the probability distributions of interface roughness, sampled among successive equilibrium configurations in the Barkhausen noise regime. Attempts to fit our data to the class of universality distributions associated to 1/f(alpha) noise give alpha approximately 1-1.1 for d=2 and 3 (provided that suitable boundary conditions are used in the latter case).

摘要

我们研究了用于描述无序磁体中巴克豪森噪声的单界面模型中雪崩(畴壁跳跃)标度性质的维度交叉。通过改变模拟样品的横向纵横比(A = L(y)/L(x)),系统维度从二维变为三维。我们发现偏离(d = 2)是一个相关场。根据交叉函数(f(x)),其中(x = (L^{-1}x)^{\phi}/A)且(\phi = 0.95(3)),表征雪崩分布幂律标度的指数(\tau)在(d = 2)时为(1.06(1))到(d = 3)时为(1.275(15))之间变化。我们讨论了我们的结果对巴克豪森噪声薄膜测量解释的可能相关性。我们还研究了在巴克豪森噪声区域连续平衡构型中采样的界面粗糙度的概率分布。尝试将我们的数据拟合到与(1/f^{\alpha})噪声相关的普适分布类,对于(d = 2)和(3),得到(\alpha\approx1 - 1.1)(前提是在后一种情况下使用合适的边界条件)。

相似文献

1
Dimensional crossover and universal roughness distributions in Barkhausen noise.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026126. doi: 10.1103/PhysRevE.69.026126. Epub 2004 Feb 27.
2
Search for universal roughness distributions in a critical interface model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 2):016134. doi: 10.1103/PhysRevE.71.016134. Epub 2005 Jan 25.
3
Wavelet transforms in a critical interface model for Barkhausen noise.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Feb;77(2 Pt 1):021131. doi: 10.1103/PhysRevE.77.021131. Epub 2008 Feb 28.
4
Playing with universality classes of Barkhausen avalanches.
Sci Rep. 2018 Jul 26;8(1):11294. doi: 10.1038/s41598-018-29576-3.
5
Statistical properties of Barkhausen noise in amorphous ferromagnetic films.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):032821. doi: 10.1103/PhysRevE.90.032821. Epub 2014 Sep 29.
6
Universal temporal characteristics and vanishing of multifractality in Barkhausen avalanches.
Phys Rev E. 2017 Aug;96(2-1):022159. doi: 10.1103/PhysRevE.96.022159. Epub 2017 Aug 31.
7
Direct observation of Barkhausen avalanche in Co thin films.
Phys Rev Lett. 2003 Feb 28;90(8):087203. doi: 10.1103/PhysRevLett.90.087203. Epub 2003 Feb 27.
8
Universal properties of magnetization dynamics in polycrystalline ferromagnetic films.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032811. doi: 10.1103/PhysRevE.88.032811. Epub 2013 Sep 23.
9
Scaling exponents for barkhausen avalanches in polycrystalline and amorphous ferromagnets.
Phys Rev Lett. 2000 May 15;84(20):4705-8. doi: 10.1103/PhysRevLett.84.4705.
10
The critical Barkhausen avalanches in thin random-field ferromagnets with an open boundary.
Sci Rep. 2019 Apr 19;9(1):6340. doi: 10.1038/s41598-019-42802-w.

引用本文的文献

1
Playing with universality classes of Barkhausen avalanches.
Sci Rep. 2018 Jul 26;8(1):11294. doi: 10.1038/s41598-018-29576-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验