de Queiroz S L A
Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, 21941-972 Rio de Janeiro, Rio de Janeiro, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026126. doi: 10.1103/PhysRevE.69.026126. Epub 2004 Feb 27.
We investigate the dimensional crossover of scaling properties of avalanches (domain-wall jumps) in a single-interface model, used for the description of Barkhausen noise in disordered magnets. By varying the transverse aspect ratio A=L(y)/L(x) of simulated samples, the system dimensionality changes from two to three. We find that perturbing away from d=2 is a relevant field. The exponent tau characterizing the power-law scaling of avalanche distributions varies between 1.06(1) for d=2 and 1.275(15) for d=3, according to a crossover function f(x), x identical with (L-1x)(phi)/A, with phi=0.95(3). We discuss the possible relevance of our results to the interpretation of thin-film measurements of Barkhausen noise. We also study the probability distributions of interface roughness, sampled among successive equilibrium configurations in the Barkhausen noise regime. Attempts to fit our data to the class of universality distributions associated to 1/f(alpha) noise give alpha approximately 1-1.1 for d=2 and 3 (provided that suitable boundary conditions are used in the latter case).
我们研究了用于描述无序磁体中巴克豪森噪声的单界面模型中雪崩(畴壁跳跃)标度性质的维度交叉。通过改变模拟样品的横向纵横比(A = L(y)/L(x)),系统维度从二维变为三维。我们发现偏离(d = 2)是一个相关场。根据交叉函数(f(x)),其中(x = (L^{-1}x)^{\phi}/A)且(\phi = 0.95(3)),表征雪崩分布幂律标度的指数(\tau)在(d = 2)时为(1.06(1))到(d = 3)时为(1.275(15))之间变化。我们讨论了我们的结果对巴克豪森噪声薄膜测量解释的可能相关性。我们还研究了在巴克豪森噪声区域连续平衡构型中采样的界面粗糙度的概率分布。尝试将我们的数据拟合到与(1/f^{\alpha})噪声相关的普适分布类,对于(d = 2)和(3),得到(\alpha\approx1 - 1.1)(前提是在后一种情况下使用合适的边界条件)。