Yang Lingfa, Epstein Irving R
Department of Chemistry and Volen Center for Complex Systems, MS 015, Brandeis University, Waltham, MA 02454-9110, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Feb;69(2 Pt 2):026211. doi: 10.1103/PhysRevE.69.026211. Epub 2004 Feb 27.
We study Turing pattern formation in a model reaction-diffusion system with two coupled identical layers. The coupling creates a pitchfork bifurcation, which unfolds the symmetric steady state via primary Turing instability, into a pair of distinct, unstable, asymmetric steady states (a-SS). The a-SS gain stability at a reverse Turing bifurcation. The multiple stabilities created by the coupling generate a corresponding multiplicity of structures, including symmetric, asymmetric, antiphase, and localized Turing patterns. Coexistence and competition of the different types of Turing patterns are studied. A one-dimensional localized structure exhibits striking curvature effects.
我们研究了一个具有两个耦合相同层的模型反应扩散系统中的图灵模式形成。这种耦合产生了一个叉形分岔,它通过初级图灵不稳定性将对称稳态展开为一对不同的、不稳定的、非对称稳态(a-SS)。a-SS在反向图灵分岔处获得稳定性。耦合产生的多重稳定性产生了相应的多种结构,包括对称、非对称、反相和局域化图灵模式。研究了不同类型图灵模式的共存和竞争。一维局域化结构表现出显著的曲率效应。