Suppr超能文献

物理相互作用在确定蛋白质折叠机制中的作用:蛋白质G和α-血影蛋白SH3的分子模拟

Roles of physical interactions in determining protein-folding mechanisms: molecular simulation of protein G and alpha spectrin SH3.

作者信息

Lee Seung Yup, Fujitsuka Yoshimi, Kim Do Hyun, Takada Shoji

机构信息

Department of Chemical and Biomolecular Engineering and Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology, Guseong-dong, Yuseong-gu, Daejeon, Korea.

出版信息

Proteins. 2004 Apr 1;55(1):128-38. doi: 10.1002/prot.10576.

Abstract

Protein-folding mechanisms of two small globular proteins, IgG binding domain of protein G and alpha spectrin SH3 domain are investigated via Brownian dynamics simulations with a model made of coarse-grained physical energy functions responsible for sequence-specific interactions and weak Gō-like energies. The folding pathways of alpha spectrin SH3 are known to be mainly controlled by the native topology, while protein G folding is anticipated to be more sensitive to the sequence-specific effects than native topology. We found in the folding of protein G that the C terminal beta hairpin is formed earlier and is rigid, once ordered, in the presence of an intact C terminal turn. The alpha helix is found to exhibit repeated partial formations/deformations during folding and to be stabilized via the tertiary contact with preformed beta sheets. This predicted scenario is fully consistent with experimental phi value data. Moreover, we found that the folding route is critically affected when the hydrophobic interaction is excluded from physical energy terms, suggesting that the hydrophobicity critically contributes to the folding propensity of protein G. For the folding of alpha spectrin SH3, we found that the distal beta hairpin and diverging turn are parts formed early, fully in harmony with previous results of simple Gō-like and experimental analysis, supporting that the folding route of SH3 domain is robust and coded by the native topology. The hybrid method provides useful tools for analyzing roles of physical interactions in determining folding mechanisms.

摘要

通过布朗动力学模拟,利用由负责序列特异性相互作用的粗粒度物理能量函数和类似弱Gō能量组成的模型,研究了两种小球蛋白(蛋白G的IgG结合结构域和α-血影蛋白SH3结构域)的蛋白质折叠机制。已知α-血影蛋白SH3的折叠途径主要受天然拓扑结构控制,而蛋白G的折叠预计比天然拓扑结构对序列特异性效应更敏感。我们发现在蛋白G的折叠过程中,C末端β发夹更早形成且一旦有序,在完整的C末端转角存在时是刚性的。发现α螺旋在折叠过程中表现出反复的部分形成/变形,并通过与预先形成的β片层的三级接触而稳定。这个预测的情况与实验φ值数据完全一致。此外,我们发现当从物理能量项中排除疏水相互作用时,折叠途径受到严重影响,这表明疏水性对蛋白G的折叠倾向有至关重要的贡献。对于α-血影蛋白SH3的折叠,我们发现远端β发夹和发散转角是早期形成的部分,这与之前简单的类似Gō和实验分析结果完全一致,支持SH3结构域的折叠途径是稳健的且由天然拓扑结构编码。这种混合方法为分析物理相互作用在确定折叠机制中的作用提供了有用的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验