Suppr超能文献

外部源在密度不均匀的球体中感应出的声场。

Acoustic field induced in spheres with inhomogeneous density by external sources.

作者信息

Kokkorakis Gerassimos C, Fikioris John G

机构信息

Institute of Communication and Computer Systems, National Technical University of Athens, GR-157 73 Zografou, Greece.

出版信息

J Acoust Soc Am. 2004 Feb;115(2):478-87. doi: 10.1121/1.1635410.

Abstract

Acoustic or electromagnetic fields induced in the interior of inhomogeneous penetrable bodies by external sources can be evaluated via well-known volume integral equations. For bodies of arbitrary shape and/or composition, for which separation of variables fails, a direct attack for the solution of these integral equations is the only available approach. In a previous paper by the same authors the scalar (acoustic) field in inhomogeneous spheres of arbitrary compressibility, but with constant density, was considered. In the present one the direct hybrid (analytical-numerical) method applied to the much simpler integral equation for spheres with constant density is generalized to densities that vary with r, theta, or even psi. This extension is by no means trivial, owing to the appearance of the derivatives of both the density and the unknown function in the volume integral, a fact necessitating a more subtle and accuracy-sensitive approach. Again, the spherical shape allows use of the orthogonal spherical harmonics and of Dini's expansions of a general type for the radial functions. The convergence of the latter, shown to be superior to other possible sets of orthogonal expansions, can be further optimized by the proper selection of a crucial parameter in their eigenvalue equation.

摘要

外部源在非均匀可穿透物体内部感应产生的声场或电磁场可通过著名的体积积分方程进行评估。对于形状和/或成分任意、变量分离法不适用的物体,直接求解这些积分方程是唯一可行的方法。在同一作者之前的一篇论文中,研究了任意压缩性但密度恒定的非均匀球体中的标量(声)场。在本文中,应用于密度恒定球体的简单得多的积分方程的直接混合(解析 - 数值)方法被推广到随r、θ甚至ψ变化的密度情况。由于体积积分中密度和未知函数的导数的出现,这种扩展绝非易事,这一事实需要一种更微妙且对精度敏感的方法。同样,球形形状允许使用正交球谐函数以及径向函数的一般类型的迪尼展开式。后者的收敛性被证明优于其他可能的正交展开集,可以通过在其特征值方程中适当选择一个关键参数来进一步优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验