Suppr超能文献

具有可积和遍历分量的映射的庞加莱回归统计。

Statistics of Poincaré recurrences for maps with integrable and ergodic components.

作者信息

Hu H, Rampioni A, Rossi L, Turchetti G, Vaienti S

机构信息

Department of Mathematics, Penn State University, University Park, Pennsylvania 16802, USA.

出版信息

Chaos. 2004 Mar;14(1):160-71. doi: 10.1063/1.1629191.

Abstract

Recurrence gives powerful tools to investigate the statistical properties of dynamical systems. We present in this paper some applications of the statistics of first return times to characterize the mixed behavior of dynamical systems in which chaotic and regular motion coexist. Our analysis is local: we take a neighborhood A of a point x and consider the conditional distribution of the points leaving A and for which the first return to A, suitably normalized, is bigger than t. When the measure of A shrinks to zero the distribution converges to the exponential e(-t) for almost any point x, if the system is mixing and the set A is a ball or a cylinder. We consider instead a system, a skew integrable map of the cylinder, which is not ergodic and has zero entropy. This map describes a shear flow and has a local mixing property. We rigorously prove that the statistics of first return is of polynomial type around the fixed points and we generalize around other points with numerical computations. The result could be extended to quasi-integrable area preserving maps such as the standard map for small coupling. We then analyze the distribution of return times in a region which is composed by two invariants subdomains: one with a mixing dynamics and the other with an integrable dynamics given by our shear flow. We show that the statistics of first return in this mixed region is asymptotically given by the exponential law, but this limit is attained by an intermediate regime where exponential and polynomial laws are linearly superposed and weighted by some factors which are proportional to the relative sizes of the chaotic and regular regions. The result on the statistics of first return times for mixed regions in the phase space can provide a basis to analyze such a property for area preserving maps in mixed regions even when a rigorous result is not available. To this end we present numerical investigations on the standard map which confirm the results of the model.

摘要

递归为研究动力系统的统计特性提供了强大的工具。在本文中,我们展示了首次返回时间统计的一些应用,以刻画混沌和规则运动共存的动力系统的混合行为。我们的分析是局部的:我们取点(x)的一个邻域(A),并考虑离开(A)且首次返回(A)(经过适当归一化)大于(t)的点的条件分布。当(A)的测度收缩到零时,如果系统是混合的且集合(A)是一个球或一个柱体,对于几乎任何点(x),该分布收敛到指数函数(e^{(-t)})。相反,我们考虑一个系统,即柱体上的斜可积映射,它不是遍历的且熵为零。该映射描述了一个剪切流并且具有局部混合性质。我们严格证明了在不动点周围首次返回的统计是多项式类型的,并且通过数值计算在其他点周围进行了推广。该结果可以扩展到准可积的保面积映射,例如小耦合下的标准映射。然后,我们分析了由两个不变子域组成的区域中的返回时间分布:一个具有混合动力学,另一个具有由我们的剪切流给出的可积动力学。我们表明,在这个混合区域中首次返回的统计渐近地由指数律给出,但这个极限是通过一个中间区域达到的,在该区域中指数律和多项式律线性叠加并由一些与混沌区域和规则区域的相对大小成比例的因子加权。相空间中混合区域的首次返回时间统计结果可以为分析混合区域中保面积映射的这种性质提供基础,即使没有严格的结果。为此,我们对标准映射进行了数值研究,证实了模型的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验