Anderson T Michael, McNaughton Samuel J, Ritchie Mark E
Biological Research Laboratories, Syracuse University, 130 College Place, Syracuse, NY 13244, USA.
Oecologia. 2004 Apr;139(2):277-87. doi: 10.1007/s00442-004-1499-1. Epub 2004 Mar 6.
One cornerstone of ecological theory is that nutrient availability limits the number of species that can inhabit a community. However, the relationship between the spatial distribution of limiting nutrients and species diversity is not well established because there is no single scale appropriate for measuring variation in resource distribution. Instead, the correct scale for analyzing resource variation depends on the range of species sizes within the community. To quantify the relationship between nutrient distribution and plant species diversity, we measured NO(3)(-) distribution and plant species diversity in 16 paired, modified Whittaker grassland plots in Serengeti National Park, Tanzania. Semivariograms were used to quantify the spatial structure of NO(3)(-) from scales of 0.4-26 m. Plant species diversity (Shannon-Weiner diversity index; H ') was quantified in 1-m(2) plots, while plant species richness was measured at multiple spatial scales between 1 and 1000 m(2). Small-scale variation in NO(3)(-) (<0.4 m) was positively correlated with 1-m(2) H ', while 1000-m(2) species richness was a log-normal function of average NO(3)(-) patch size. Nine of the 16 grassland plots had a fractal (self-similar across scales) NO(3)(-) spatial distribution; of the nine fractal plots, five were adjacent to plots that had a non-fractal distribution of NO(3)(-). This finding offered the unique opportunity to test predictions of Ritchie and Olff (1999): when the spatial distribution of limiting resources is fractal, communities should display a left-skewed log-size distribution and a log-normal relationship between net primary production and species richness. These predictions were supported by comparisons of plant size distributions and biomass-richness relationships in paired plots, one with a fractal and one with a non-fractal distribution of NO(3)(-). In addition, fractal plots had greater large-scale richness than paired non-fractal plots (1,0-1000 m(2)), but neither species diversity ( H') nor richness was significantly different at small scales (1 m(2)). This result is most likely explained by differences in the scale of resource variation among plots: fractal and non-fractal plots had equivalent NO(3)(-) variation at small scales but differed in NO(3)(-) variation at large scales (as measured by the fractal dimension). We propose that small-scale variation in NO(3)(-) is largely due to the direct effects of plants on soil, while patterns of species richness at large scales is controlled by the patch size and fractal dimension of NO(3)(-) in the landscape. This study provides an important empirical step in understanding the relationship between the spatial distribution of resources and patterns of species diversity across multiple spatial scales.
生态理论的一个基石是,养分的可利用性限制了能够栖息在一个群落中的物种数量。然而,限制性养分的空间分布与物种多样性之间的关系尚未明确确立,因为不存在一个适用于测量资源分布变化的单一尺度。相反,分析资源变化的正确尺度取决于群落中物种大小的范围。为了量化养分分布与植物物种多样性之间的关系,我们在坦桑尼亚塞伦盖蒂国家公园的16对经过改良的惠特克草地样地中测量了NO(3)(-)分布和植物物种多样性。半变异函数图用于从0.4 - 26米的尺度量化NO(3)(-)的空间结构。植物物种多样性(香农 - 韦纳多样性指数;H')在1平方米的样地中进行量化,而植物物种丰富度在1至1000平方米的多个空间尺度上进行测量。NO(3)(-)的小尺度变化(<0.4米)与1平方米的H'呈正相关,而1000平方米的物种丰富度是平均NO(3)(-)斑块大小的对数正态函数。16个草地样地中有9个具有分形(跨尺度自相似)的NO(3)(-)空间分布;在这9个分形样地中,有5个与具有非分形NO(3)(-)分布的样地相邻。这一发现提供了一个独特的机会来检验里奇和奥尔夫(1999年)的预测:当限制性资源的空间分布是分形时,群落应呈现左偏的对数大小分布以及净初级生产力与物种丰富度之间的对数正态关系。这些预测通过对成对样地中植物大小分布和生物量 - 丰富度关系的比较得到了支持,其中一个样地具有分形的NO(3)(-)分布,另一个具有非分形分布。此外,分形样地在大尺度(1.0 - 1000平方米)上比成对的非分形样地具有更高的丰富度,但在小尺度(1平方米)上物种多样性(H')和丰富度均无显著差异。这一结果很可能是由样地间资源变化尺度的差异所解释:分形和非分形样地在小尺度上具有等效的NO(3)(-)变化,但在大尺度上NO(3)(-)变化不同(由分形维数衡量)。我们提出,NO(3)(-)的小尺度变化主要是由于植物对土壤的直接影响,而大尺度上的物种丰富度模式则由景观中NO(3)(-)的斑块大小和分形维数控制。这项研究为理解资源的空间分布与跨多个空间尺度的物种多样性模式之间的关系提供了重要的实证步骤。