Suppr超能文献

一种基于单倍型的关联分析新算法:随机期望最大化算法。

A new algorithm for haplotype-based association analysis: the Stochastic-EM algorithm.

作者信息

Tregouet D A, Escolano S, Tiret L, Mallet A, Golmard J L

机构信息

INSERM U525 2INSERM U436, Paris, France.

出版信息

Ann Hum Genet. 2004 Mar;68(Pt 2):165-77. doi: 10.1046/j.1529-8817.2003.00085.x.

Abstract

It is now widely accepted that haplotypic information can be of great interest for investigating the role of a candidate gene in the etiology of complex diseases. In the absence of family data, haplotypes cannot be deduced from genotypes, except for individuals who are homozygous at all loci or heterozygous at only one site. Statistical methodologies are therefore required for inferring haplotypes from genotypic data and testing their association with a phenotype of interest. Two maximum likelihood algorithms are often used in the context of haplotype-based association studies, the Newton-Raphson (NR) and the Expectation-Maximisation (EM) algorithms. In order to circumvent the limitations of both algorithms, including convergence to local minima and saddle points, we here described how a stochastic version of the EM algorithm, referred to as SEM, could be used for testing haplotype-phenotype association. Statistical properties of the SEM algorithm were investigated through a simulation study for a large range of practical situations, including small/large samples and rare/frequent haplotypes, and results were compared to those obtained by use of the standard NR algorithm. Our simulation study indicated that the SEM algorithm provides results similar to those of the NR algorithm, making the SEM algorithm of great interest for haplotype-based association analysis, especially when the number of polymorphisms is quite large.

摘要

现在人们普遍认为,单倍型信息对于研究候选基因在复杂疾病病因学中的作用可能非常有意义。在没有家系数据的情况下,除了在所有位点都是纯合子或仅在一个位点是杂合子的个体外,无法从基因型推断单倍型。因此,需要统计方法从基因型数据中推断单倍型,并测试它们与感兴趣的表型的关联。在基于单倍型的关联研究中,经常使用两种最大似然算法,即牛顿-拉夫森(NR)算法和期望最大化(EM)算法。为了规避这两种算法的局限性,包括收敛到局部最小值和鞍点,我们在此描述了如何将EM算法的一种随机版本,即SEM,用于测试单倍型-表型关联。通过模拟研究,在包括小/大样本和罕见/常见单倍型在内的一系列实际情况下,研究了SEM算法的统计特性,并将结果与使用标准NR算法获得的结果进行了比较。我们的模拟研究表明,SEM算法提供的结果与NR算法相似,这使得SEM算法对于基于单倍型的关联分析非常有意义,特别是当多态性数量相当大时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验