Pires Virgínia M R, Henshaw Joanna L, Prates José A M, Bolam David N, Ferreira Luís M A, Fontes Carlos M G A, Henrissat Bernard, Planas Antoni, Gilbert Harry J, Czjzek Mirjam
CIISA-Faculadade de Medicina Veterinaria, Rua Prof. Cid dos Santos, 1300-477 Lisbon, Portugal.
J Biol Chem. 2004 May 14;279(20):21560-8. doi: 10.1074/jbc.M401599200. Epub 2004 Mar 8.
Glycoside hydrolases that release fixed carbon from the plant cell wall are of considerable biological and industrial importance. These hydrolases contain non-catalytic carbohydrate binding modules (CBMs) that, by bringing the appended catalytic domain into intimate association with its insoluble substrate, greatly potentiate catalysis. Family 6 CBMs (CBM6) are highly unusual because they contain two distinct clefts (cleft A and cleft B) that potentially can function as binding sites. Henshaw et al. (Henshaw, J., Bolam, D. N., Pires, V. M. R., Czjzek, M., Henrissat, B., Ferreira, L. M. A., Fontes, C. M. G. A., and Gilbert, H. J. (2003) J. Biol. Chem. 279, 21552-21559) show that CmCBM6 contains two binding sites that display both similarities and differences in their ligand specificity. Here we report the crystal structure of CmCBM6 in complex with a variety of ligands that reveals the structural basis for the ligand specificity displayed by this protein. In cleft A the two faces of the terminal sugars of beta-linked oligosaccharides stack against Trp-92 and Tyr-33, whereas the rest of the binding cleft is blocked by Glu-20 and Thr-23, residues that are not present in CBM6 proteins that bind to the internal regions of polysaccharides in cleft A. Cleft B is solvent-exposed and, therefore, able to bind ligands because the loop, which occludes this region in other CBM6 proteins, is much shorter and flexible (lacks a conserved proline) in CmCBM6. Subsites 2 and 3 of cleft B accommodate cellobiose (Glc-beta-1,4-Glc), subsite 4 will bind only to a beta-1,3-linked glucose, whereas subsite 1 can interact with either a beta-1,3- or beta-1,4-linked glucose. These different specificities of the subsites explain how cleft B can accommodate beta-1,4-beta-1,3- or beta-1,3-beta-1,4-linked gluco-configured ligands.
从植物细胞壁释放固定碳的糖苷水解酶具有重要的生物学和工业意义。这些水解酶含有非催化性碳水化合物结合模块(CBMs),通过使附加的催化结构域与其不溶性底物紧密结合,极大地增强了催化作用。6家族CBMs(CBM6)非常独特,因为它们含有两个不同的裂缝(裂缝A和裂缝B),可能作为结合位点发挥作用。亨肖等人(亨肖,J.,博拉姆,D. N.,皮雷斯,V. M. R.,茨耶克,M.,亨里萨特,B.,费雷拉,L. M. A.,丰特斯,C. M. G. A.,和吉尔伯特,H. J.(2003年)《生物化学杂志》279,21552 - 21559)表明,CmCBM6含有两个结合位点,它们在配体特异性方面既有相似之处又有不同之处。在此我们报告了与多种配体复合的CmCBM6的晶体结构,揭示了该蛋白所显示的配体特异性的结构基础。在裂缝A中,β - 连接的寡糖末端糖的两个面与色氨酸 - 92和酪氨酸 - 33堆积,而结合裂缝的其余部分被谷氨酸 - 20和苏氨酸 - 23阻断,在结合多糖内部区域的裂缝A中的CBM6蛋白中不存在这些残基。裂缝B暴露于溶剂中,因此能够结合配体,因为在其他CBM6蛋白中封闭该区域的环在CmCBM6中要短得多且灵活(缺乏保守的脯氨酸)。裂缝B的亚位点2和3容纳纤维二糖(葡萄糖 - β - 1,4 - 葡萄糖),亚位点4仅与β - 1,3 - 连接的葡萄糖结合,而亚位点1可以与β - 1,3 - 或β - 1,4 - 连接的葡萄糖相互作用。亚位点的这些不同特异性解释了裂缝B如何容纳β - 1,4 - β - 1,3 - 或β - 1,3 - β - 1,4 - 连接的葡萄糖构型的配体。